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sequence may be improved considerably. (The usual Davidson procedure (Davidson 
1975, Butscher and Kammer 1976) corresponds to the choice m = 1.) 

2.6. The Lowdin perturbation method 

This technique (Lowdin 1951, Brust 1964, 1968) bears no close relationship to any of 
the approaches described above or below, but is widely used to ‘fold in’ the effects of 
a large N x N Hamiltonian into a much smaller No x No effective Hamiltonian. For 
the matrix eigenproblem ( H  - A l ) l x )  = 0, the N x N Hamiltonian H is partitioned into 
four blocks, where Ho is No x No as shown schematically: 

(2.15) 

so that, provided the number of eigenvalues sought, n, satisfies n S No<< N,  the effective 
eigenproblem may be reduced to diagonalising the No x No matrix 

(2.16) 

Obviously the effective matrix elements now depend on the actual eigenvalues of the 
full Hamiltonian H ;  the iterative solution of the new problem (2.16) naturally generates 
the so-called Brillouin-Wigner perturbation series (e.g. Ziman 1969). In practice (Brust 
1964, 1968), to find eigenvalues of H near A: (an eigenvalue of Ho) one replaces A 
above by A y ,  or even by a free-electron approximation to it. As typically implemented, 
however, the Lowdin scheme keeps only the lowest two orders in perturbation theory. 
As such, the technique may diverge from a correct eigenvalue or converge to an 
incorrect one, as will be illustrated below. 

H ; ~  = tz0- B( c - A I ) - ’ B + .  

3. RMS-DIIS method 

The ‘residual minimisation/direct inversion in the iterative subspace’ ( R M M - D I I S  or 
simply DIIS)  method due to Bendt and Zunger (1982a,b) will be discussed in detail 
below; it can be described by the choices, for iteration number p and eigenvalue j ,  

and 
{Ix l )}={Ia~) , J=l  , . . . ,  N o } + { I e , ) , j = N o + l ,  . . . ,  NI (3.1) 

{Ib,)}[p=0/1/2/ . . . ] = [ I  ~y)/l6A:”)/lSA:~’)/ . . . .  (3.2) 
The first distinguishing feature of the D I I S  method is its choice of complete set. As 
discussed after equation (2.9) above the usual diagonal approximation in the Newton 
step (equation (2.10)) becomes exact if the complete set selected consists of the true 
eigenvectors of H. Thus we expect that a complete set consisting of approximate 
eigenvectors of H (i.e. the set { lay)})  of eigenvectors of Ho augmented with zeros to 
make them N-dimensional) plus a set of unit vectors (to make the complete set contain 
N linearly independent vectors) will be a considerably better choice than the usual 
set {le]) ,  j = 1, . . . , N}. Moreover, the eigenvectors of Ho are immedpof 584 
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The expansion set {I b,)} requires further explanation. Like the other basis expansion 
methods, D I I S  uses a Newton step, equation (3.3), to generate a new vector /6A) which 
is then added to {Jb,)}. The elements of this set are thus the )6A) generated in each of 
the preceding iterations, so that DIIS  clearly incorporates information from the entire 
iteration history for the given eigenvector being refined. Since the vectors {16A"))} are 
generated by the iteration process, they are said to span the 'iterative subspace'. The 
great power of the DIIS  method lies, however, not in the choices for {Ib,)} and {Ix,)} 
but in the fact that, to produce the new approximate eigenvector of H one asks: 'what 
linear combination of the expansion vectors minimises the residual of the resulting 
vector IA",qs)?' (hence the R M M  of residual minimisation). 

In what follows the steps involved will be described sequentially. It will be assumed 

IA("-')), the latest approximations to the eigenvalue and its eigenvector. At this point 
the expansion set consists of {I8A'O'), )6A")), . . . , 18A("-'))}, the set 

{ lb l ) } ,  
which now contains ( m  + 1)  elements. (One generally forms and stores the set of 
vectors {HIGA'"'')} and  {S16Aim')} as the {ISA'"'))} are generated, for reasons which 
will become obvious in step (ii)). 

that upon entering the mth iteration one has available E,,, = E'"-') and (Aold) = 

(ii) Perform the D I E  step: one writes 

(3.4) 

for k = 0 , .  . . , m. Letting la) denote the ( m  + 1)-dimensional vector whose components 
are the ak, this problem is equivalent to finding the eigenvector of lowest eigenvalue 
of the generalised Hermitian eigenproblem: 

Pia) = p*QIa) (3.6) 

Pry =((If- Eol,S)SAi')l(H- E,,,S)GA'") (3.7) 

where 

and 

Q~~ = (GA(')/S/SA(~)). (3.8) 

Since P and  Q are matrices of size only ( m  + 1) x ( m  + 1) and the number of iterations 
required is small, this diagonalisation may be performed by the Choleski-Householder 
method in negligible time. (This step has been termed by Pulay, who introduced this 
step to accelerate the convergence of self-consistent solutions of the Schrodinger 
equation (Pulay 1980), 'direct inversion in the iterative subspace', hence RMM-DIIS.) 

(iii) Substituting the coefficients {ak} minimising the residual into (3.4), one then 
calculates 

E E& = (A",qsI HI A",q";/( AElYs I S I AE;s) (3.9) 

(3.10) 
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Figure 1. Iteration histories for the modified Nesbet matrix: A, block Davidson ( m  = n = 4), 
E = IO-’: B, Davidson: C, D I I S ;  D, E, F, simultaneous coordination relaxation for m = 5,  
3, 1 ,  respectively (see Raffenetti 1979); G, our version of unsymmetric Lanczos (equation 
( 2 . 1 2 ) ) :  H, simple iteration using the D I I S  complete set (equation ( 3 . 1 ) ) ;  I ,  simple iteration 
using the Nesbet complete set (see equation ( 2 . 1 3 ) ) .  

first five diagonal matrix elements as an imitation of the effects of five-fold degeneracy. 
Inspection of figure 1 shows the following. 

(i) The three most rapidly convergent methods are the block Davidson method 
(with m = n =4 ,  curve A), the regular Davidson method ( m  = 1, curve B) and DIIS, 
curve C. 

( i i )  The ‘simultaneous coordinate relaxation’ method (Raffenetti 1978) (not dis- 
cussed here), applied here in a block form, converges at a rate which is fairly sensitive 
to the number of eigenvectors being refined simultaneously ( m  = 1,3,  5 ;  curves F, E, 
and D, data of Raffenetti (1978)). 

(iii) 
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Figure 2. Iteration histories for the complex Hermitian ZnSe matrix: A, block Davidson 
( m  = n = 8 ) ;  B, Davidson; C, D I I S ;  D, simple iteration using the D I I S  complete set equation 
( 3 . 1 ) ;  E, our version of the unsymmetric Lanczos method (equation (2.12)); F, simple 
iteration using the Nesbet complete set equation (2 .13) .  

of the well known Lowdin perturbation scheme (see § 2) .  In figure 3 we show, for 
fixed ‘small” matrix dimension No=9,  the eigenvalues which result from the DIIS 

method (or, in fact, any method which gives correct eigenvalues) and  the Lowdin 
perturbation calculation (using the eigenvalues of Ho in equation (2.17)) as one 
increases the size N of the large matrix from 9 to 181 (the full reference Hamiltonian 
described above). Curves belonging to the same multiplet (indicated on the right-hand 
margin of the figure) are connected with braces?. It is clear that for the valence band 
(the lowest two multiplets, of degeneracy 1 and  3, respectively) the Lowdin perturbation 

I- I 

I l , l , l , l , l , l , l , l r l ,  

0 40 80 120 160 2 00 
Size o f  large matrix, N 

Figure 3. Comparison of Lowdin (- - - )  and D I I S  (-) convergence for fixed N0=9 as 
a function of N .  

+ The pathology for D I I S  and the Lowdin method for the highest eigenvalues shown (i.e. complete omission 
of the second level from the top) is a manifestation of the inadequacy of No = 9 in representing the lowest 
six multiplets of the 181 x 181 problem. 
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Figure 5. Dependence of iteration hisyory on small matrix dimension No for 181 X 181 
complex Hermitian matrix. Values of No: A, I ;  W, 9 ;  0, 15; e, 27;  A ,  5 1 :  0, 65:  0. 113. 

n eigenvalues of H, in order not to waste time on level crossings and  eigenvalue sorts; 
( b )  pick the smallest No consistent with ( a )  to minimise time spent in Choleski- 
Householder diagonalisation of Ho. 

The DIIS procedure would seem to be most valuable under the following circum- 
stances: ( i)  the size of the ‘small’ matrix, No, is itself large enough so that the time 
spent per iteration for the other efficient methods (e.g. the Davidson methods) becomes 
unwieldy, and/or  (ii) there is significant degeneracy in the level structure of the 
eigenvalues sought (which often confuses or slows down competing methods). 

The explicit sequence of steps in the DIIS procedure is given in the appendix. 

6. Summary and conclusions 

We have presented above a description of a new iterative method for diagonalising 
very large matrices. The structure and philosophy of the method were compared with 
other currently used methods ; we have displayed numerical comparisons for two rather 
different test matrices which illustrate the strengths and  weaknesses of the new and  
older methods, both in terms of convergence rates and  computation times (within a 
simple model). A brief description of its implementation was given with suggestions 
for the choice of convergence and other parameters. 

The new R M M - D I I S  method has already been used successfully for a large number 
of electronic structure problems (e.g. Bendt and Zunger 1982c, Jaffe and Zunger 1983). 
It is efficient both in terms of computation time and  central memory storage require- 
ments, and  holds the promise of pushing back a number of obstacles in the path of 
the calculation of, for example, the electronic structure of complex crystalline and  
amorphous materials. Subject to the constraint that one needs to provide reasonable 
input guesses for eigenvalues and eigenvectors, it may help 






