LIU, ZHANG, WAUGH, DESSAU, AND ZUNGER PHYSICAL REVIEW B94, 125207 (2016)

(iÐiii) and their reßection in the switch in orbital texture

ORBITAL MAPPING OF ENERGY BANDS AND THE ...

FIG. 2. (aĐd) Orbital texture indicated by

VI. UNDERSTANDING THE SPIN-POLARIZATION EFFECTS

Equations $\hat{\mathfrak{g}}$) and $\hat{\mathfrak{g}}$ show that each orbital component couples with a certain spin state, forming bital-dependent spin textures see Eq. ℓ). Maximal spin magnitude arises when every orbital-dependent spin texture coaligns, i.e., has the same helicity. This requires that the band eigenstate be composed exclusively of orbitals with the same azimuthal quantum numbe m . In real materials where SOC mixes orbitals with different m_{\parallel} in one eigenstate $n(k)$, the corresponding spin polarization is truncated relative to its maximal value. SpeciÞcally, the tangential in-plane orbital (p_t) always couples opposite spin texture to that of radial in-plane orbital (\mathbf{p}_r) , s, and \mathbf{p}_z orbital. At the wave vector with k $0, p_t$ and p_t components have the same intensity but opposite spin pattern and thus cancel each other, making the spin polarization $S(k)$ 0) = $|y_B|^2$ all contributed by the s and p_z orbitals. This scenario gives the truncated spin polarization at for all the bands shown in Fig. (c) . The total spin polarization summing over all bands is equivalent to the value obtained from the contributions $\eta = 0$ states, e.g., s,p_z, andd_z², etc. This statement is valid also in the traditional 2D Rashba systems such as $Au(111)$ surface, \overline{a} in which the surface Rashba bands are nearly exclusively composed by the s and p_z states, and thus have nearly 100% spin polarization.

Due to the orbital texture switch, we Þnd from Eqs. (and (4) that the dominate in-plang orbitals of a pair of Rashba bands couple to spin textures with the same helicity. This fact is conÞrmed by DFT calculation showing that the dominating radial orbital for VB1 and tangential orbital for VB2 both have RH spin texture (see Fig. In BiTel, the wave functions of VB1 and VB2 are dominated by p_z orbitals [Tep_z(50%), I Š p_z(13%), and Bis (13%)]. We consider here two categories of orbitals classibed by θ (s andp_z for all sites) and $n_1 = 0$ (in-plane α and β _v for all sites) and examine the corresponding spin textures coupled by these two classes. The + p_z -dependent spin texture has opposite helicity for VB1 and VB2; i.e., VB1 has a right-handed (RH) spin texture, while VB2 has a left-handed (LH) spin texture (see Fig5). On the other hand, the in-plane orbital $(p_x + p_y)$ also contributes helical spin textures, but these orbital-dependent spin textures have the same RH helicity for both VB1 and VB2, as shown by the white arrows in Figs.4(a)and4(b). This can also be understood by multiorbital model equations ϕ and ϕ), where the $p_r(p_t)$ orbitals always provide positive (negative) contributions to the p_z -orbitaldependent spin textures. Consequently, at a **k thite** different intensity of p_t and p_t orbitals for VB1 and VB2 can cause different spin magnitudes to the respective bands, and thus a nonzero net spin polarizatio&

FIG. 5. Orbital-dependent spin texture coupled by in-plane bital $(p_x + p_y)$ andm_l = 0 orbital $(s + p_z)$, and the total spin texture of VB1 (upper row) and VB2 (lower row). The background color indicates the out-of-plane spin component (RH) denotes left-handed (right-handed) in-plane spin textur $\mathbf{S}_x(S_v)$.

VII. EFFECTS OF DIFFERENT SOC STRENGTH To demonstrate that the intriguing spin-polarization effects energy E_R originate from SOC we artiÞcially rescaled the strength of SOC by adding a multiplier on the SOC Hamiltonian $(= 1)$ for the real system). The spin magnitude and spin-splitting

TABLE I. Direction of atomic-orbital-dependent spin textures in the vicinity of theX point. S_1 and S_2 form in-plane and perpendicular Bi-S bonds, respectively.

	s	p_{x}	p_v	p_z
Bi			Ð	
	H)	Ð		Ð
S_1 S_2			Ð	

We choose a centrosymmetric R-2 material, LaQBiS (using the reported space gro \mathbb{F} 4/nmm), to illustrate the truncation effects. Figure $\frac{8}{a}$ and $\frac{8}{e}$ exhibit the projected atomic-orbital-dependent spin textures of LaQBiS on one BiS layer of the twofold degenerated conduction band minimum (CBM) and valence band maximum (VBM), respectively. The local spin textures on the other B is γ er are exactly oppositely formed $[5]$, and are not shown here. All the spin textures are in they plane, with almost zera component. We observe helical spin for holes but nonhelical spin for electrons, suggesting Rashba-type polarization (R-2) and the combination of Rashba and Dresselhaus effects (R-2 and D-2) for VBM and CBM, respectively. In general, the environment of R-2 material contains simultaneously polar Þeld and inversion asymmetry, indicating the coexistence of R-2 and D-2 effects, depending on different band characters.

We note that the hole spin is nearly fully polarized with the spin magnitude 90%, while the electron spin is only30% polarized. Besides the spin mixture effect due to the interlayer coupling (vanished along the M direction), the reason that leads to the partial polarization is the diverse atomic-orbitaldependent spin textures. Figures $EB(d)$ and $8(f)EB(h)$ show the spin textures from different atomic orbitals within one BiS layer. We see all the orbital-dependent spin textures are parallel or antiparallel to the total spin texture, and they can make either

- [1] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, [Nat. Mater.14,](http://dx.doi.org/10.1038/nmat4360) [871\(2015\)](http://dx.doi.org/10.1038/nmat4360).
- [2] C. Ciccarelli, M. D. HalsKjetil, A. Irvine, V. Novak, Y. Tserkovnyak, H. Kurebayashi, A. Brataas, and A. Ferguson, Nat. Nanotechnol10,