
Chapter 14
Atomistic Pseudopotential Theory of Droplet
Epitaxial GaAs/AlGaAs Quantum Dots

Jun-Wei Luo, Gabriel Bester, and Alex Zunger

Abstract In this chapter, following the introduction to the basic electronic
properties of semiconductor quantum dots (QDs), we first briefly introduce our
atomistic methodology for multi-million atom nanostructures, which is based
on the empirical pseudopotential method for the solution of the single-particle
problem combined with the configuration interaction (CI) scheme for the many-
body problem which were developed in the solid-state theory group at the National
Renewable Energy Laboratory over the past two decades. This methodology,
described in Sect. 14.2, can be used to provide quantitative predictions of the
electronic and optical properties of colloidal nanostructures containing thousands
of atoms as well as epitaxial nanostructures containing several millions of atoms.
In Sect. 14.3, we show how the multi-exciton spectra of a droplet epitaxy QD
encodes nontrivial structural information that can be uncovered by atomistic many-
body pseudopotential calculations. In Sect. 14.4, we investigate the vertical electric
field tuning of the fine-structure splitting (FSS) in several InGaAs and GaAs QDs
using our atomistic methodology. We reveal the influence of the atomic-scale
structure on the exciton FSS in QDs. Finally, a comprehensive and quantitative
analysis of the different mechanisms leading to HH–LH mixing in QDs is presented
in Sect. 14.5. The novel quantum transmissibility of HH–LH mixing mediated by
intermediate states is discovered. The design rules for optimization of the HH–LH
mixing in QDs are given in this section.

J.-W. Luo (�)

mailto:jun-wei.luo@nrel.gov
mailto:G.Bester@fkf.mpg.de
mailto:alex.Zunger@colorado.edu




14 Atomistic Pseudopotential Theory of Droplet Epitaxial GaAs/AlGaAs. . . 331

character [21], whereas the bulk HH band, |3/2,±3/2〉 = ∓(|X〉 ± i|Y 〉)| ↑,↓〉/√
2,

contains exclusively |X〉, |Y 〉 components, and the bulk LH band |3/2,±1/2〉 =
(1/

√
3)[(|X〉 ± i|Y 〉)| ↓,↑〉+√

2|Z〉| ↑,↓〉] contains |Z〉 component. Thus, mixing
LH with HH leads to the control of the FSS via vertical electric field Fz. HH–
LH mixing also leads to fast spin decoherence of HH-dominated QD holes [22]
by introducing additional efficient spin relaxation channels belong to LH band.
In addition, both experimentally and theoretically observed optical polarization
anisotropy of neutral excitons (e.g., X0 and XX0) and charged trion (e.g., X−1 and
X+1) radiative recombination is known to arise from HH–LH mixing [23–27].

In the remainder of this chapter, we first briefly introduce our atomistic method-
ology for multi-million atom nanostructures, which is based on the empirical
pseudopotential method [28], combined with the configuration interaction (CI)
scheme for the many-body problem developed by solid-state theory group at NREL
over the past two decades. This methodology, described in Sect. 14.2, can be
used to provide quantitative predictions of the electronic and optical properties
of colloidal nanostructures [15, 29–34] containing thousands of atoms as well as
epitaxial nanostructures [17, 18, 21, 35–41] containing several millions of atoms. In
Sect. 14.3, we then show how the multi-exciton spectra of an unstrained GaAs QD
encodes nontrivial structural information that can be uncovered by atomistic many-
body pseudopotential calculations. In Sect. 14.4, we investigate the vertical electric
field tuning of the FSS in several InGaAs and GaAs QDs and reveal the influence
of the atomic-scale structure on the exciton FSS in QDs. Finally, in Sect. 14.5 a
comprehensive and quantitative analysis of the different mechanisms leading to
HH–LH mixing in QDs is presented. We specifically highlight the discovery of
the quantum transmissibility of the HH–LH mixing mediated by QD intermediate
states. The design rules for optimization of the HH–LH mixing in QDs are given in
this section.
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Fig. 14.2 The squared wave functions (3D isosurface and 2D in-plane mapping) of the first
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14.3 Geometry of Epitaxial GaAs/(Al,Ga)As QDs as Seen
by Excitonic Spectroscopy

Molecular spectroscopy has always been intimately connected with molecular
structure and symmetry through fundamental interpretative constructs such as
symmetry-mandated selection rules, level degeneracies, and polarization [52]. Yet,
the spectroscopy of epitaxial semiconductor QDs—large simple molecules made of
103–10





14 Atomistic Pseudopotential Theory of Droplet Epitaxial GaAs/AlGaAs. . . 339

as the QDs seen by optical spectroscopy. We conclude1 that the QD, the height
of which was measured to be 14 nm in [57, 62], is not the same QD that was
used in [25, 56, 60, 63, 64] to measure the band gap and exciton fine structure. It
is worth mentioning that the QD height decreases from 14 nm when the QDs are
grown by droplet epitaxy on a (001)-oriented GaAs substrate [57] to much smaller
value of 2.3 ± 0.
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In summary, we showed how the multi-exciton spectra of a droplet epitaxy QD
encodes nontrivial structural information that can be uncovered by atomistic many-
body pseudopotential calculations. We calculated single-particle energy levels,
exciton gap, optical emission spectra, and FSSs for a large number of strain-free
GaAs/AlGaAs QDs with three different shapes and different structure parameters
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This dependence of s0, and also F0, on the random atomic arrangement is
in agreement with the expectations from a simple mesoscopic model that shows
these terms to be proportional to the “amount of deviation from C2v” symmetry
toward the lower C1 symmetry. Hence, a QD made of a random alloy (with
formally C1 symmetry) with an atomic decoration of the lattice that will resemble
the C2v symmetry, will have the smallest s0. This represents a striking example
of an observable, where the conventional treatment of a random alloy through a
replacement of the atomic distribution by an average (VCA [90]) or an effective
medium (CPA [90]) fails. In this case, the position of each and every atom in a
structure made of several thousand atoms is relevant.
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in strain-free GaAs/AlGaAs QDs grown by molecular droplet epitaxy [4, 86]. The
anisotropic QD geometric shape, which also lowers the QD symmetry from D
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Table 14.3 Bulk band (HH, LH, and SO) characters of the highest
three hole states h0, h1, and h2 for strain-free GaAs/Al(Ga)As and
strained In0.6Ga0.4As/GaAs QDs

HH/LH/SO (%)

QD
Shape cylindrical
Composition Point group E(h0) E(h1) E(h2)
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Mechanism (iv) Low Local Microscopic Symmetry Interfaces. The impact of local
atomic symmetry of C2v interface on HH–LH mixing was first proposed by Ivchenko
et al. [98, 99] using phenomenological Hamiltonian to explain unexpected HH–LH
mixing observed in D2d GaAs/AlAs QWs [



http://link.aip.org/link/?APL/64/196/1
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http://link.aip.org/link/?JAP/112/054303/1
http://link.aip.org/link/?JAP/112/054303/1
http://link.aps.org/doi/10.1103/PhysRevLett.92.166104
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