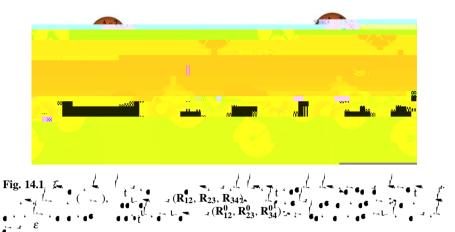

Chapter 14 Atomistic Pseudopotential Theory of Droplet Epitaxial GaAs/AlGaAs Quantum Dots

Jun-Wei Luo, Gabriel Bester, and Alex Zunger

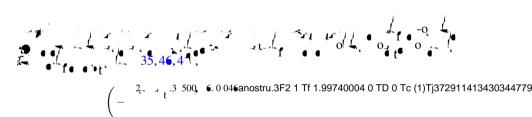
I.́- . (⊠)

14 $l \neq 0$ $l \neq 0$ $l \neq 0$ $l \neq 0$ $l \neq 0$ d = 1 (1 + 1) (2

14.2 Atomistic Many-Body Pseudopotential MPseual00.20510004svoffm39


$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{$$

$$= \frac{1}{\alpha} \alpha^{(1)}(\alpha), \beta_{\alpha}, \alpha = \sigma_{\alpha} \alpha^{$$

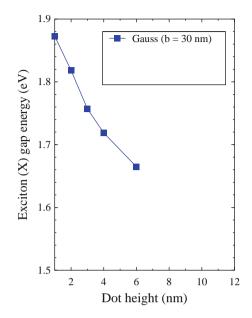

$$11 + 2 \quad 12 = \sqrt{\frac{3}{4 \cdot 0}} (3\alpha + \beta - 6\sigma)$$

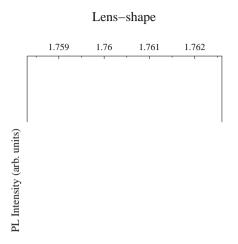
$$11 - 12 = \sqrt{\frac{3}{1 \cdot 0}} \beta$$

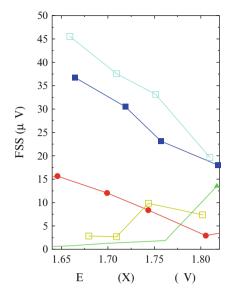
$$44 = \sqrt{\frac{3}{1 \cdot 0}} \frac{\alpha\beta - \sigma^2}{\alpha\beta}$$

 $(\mathbf{R_{12}}, \mathbf{R_{23}}, \mathbf{R_{34}}) = (1 + \varepsilon) \cdot (\mathbf{R_{12}^0}, \mathbf{R_{23}^0}, \mathbf{R_{34}^0}).$ (14.3)

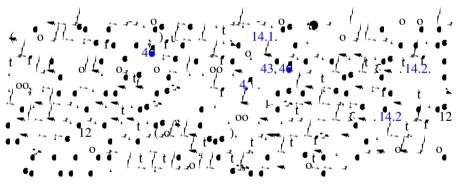
Electrons			Holes		
GaAs QD (F)	HH LH SO EL	InAs QD (F)	GaAs QD (F)	HH LH SO EL	In As QD (F)
Р	0 1 0 92 0 0 0 0 0 0 0 0	200 A		S 83 1 0 0 P 3 3 P 0 D 0 2 0 0	
P	0 4 2 88 1 0 1 0 0 0 0 0	$e_0 = 1.030 \text{ eV}$	$\mathbf{h}_0 = 0 \ \mathbf{eV}$	S 91 0 0 0 P 0 2 0 0 D 0 0 0 0	$\mathbf{h}_0 = 0 \ \mathbf{eV}$
S P D	0 0 0 0 0 1 0 91 0. 0 0,000			S 5 9 0 0 P 44 23 0 0	∞ nw
s P			•		
$e_1 = 1.780 \text{ eV}$ D	1 0 1 0	$e_1 = 1.088 \text{ eV}$	$h_1 = -0.007 \text{ eV}$	D 0 4 0 0	$h_1 = -0.015 \text{ eV}$
S P	0 0 0 0 0 1 0 90 0 0 0 1	0		S 4 38 0 0 P 12 13 0 0 D 17 0 0 0	
ea	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		h, = -0.089, eV	S 0 4 0 1 P 85 1 1 0 D 0 0 0 0	$\frac{1}{10} \frac{1}{10} = -0.023 \text{ eV}$
P P e ₃ = 1.822 eV D	0 0 0 14 0 0 0 1 0 1 0 76 0 0 0 5 1 0 1 0 0 3 1 78	e ₃ = 1.150 eV	h ₃ = -0.010 eV	S I 0 0 Mit 11 0 0 Mit 4 0 0 S 0 0 0 P 1 0 0 D 0 0 0 0 S 0 0 0 0 D 80 0 0 0	h ₃ = -0.029 eV
Fig. 14.2	t'∎ ^{∎ l} -∎ [™] t	- l_ = (3 l_		-0;- , ool	f ⁾


-


-0.5 -


14 later of last of old and and

14.3 Geometry of Epitaxial GaAs/(Al,Ga)As QDs as Seen by Excitonic Spectroscopy

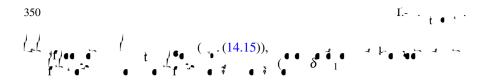


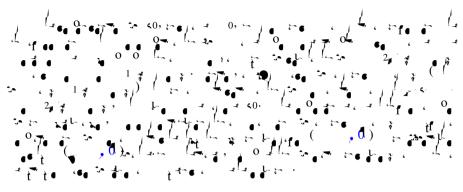
14
$$l_{1}$$
 l_{2} l_{1} l_{2} l

le 14.1 Kl apre			1		(%)
gle efficients	<u>*9</u>	o dla	κί (), , ,	0	
le_	·	z , O	-		
	00	⊷ 0. , 0.2 <i>-</i>	10, .5, 2.5	0	0
	01	, <i>1</i>	45, 45, 3	35	35
	02	<u>,</u> 1	0, 50, 3	45	45
	03		0, 50, 3	35	45
	04	, .±	60, 40, 2	35	45
	05	• , _=	25, 31, 3,	35	35
		, ·	· · · /		
	06t -	i ≠ , 0	30, 30, 3	30	30
	0	, 1	30, 30, 3	30	30
	0	, 1			
		, ±	30, 30, 6	30	30
	0,	, <i>-</i>	35, 30, 3	30	30
	10	, ±	35, 30, 4	30	30
	11	, <i>-</i> ±	35, 30, 6	30	30
	12	0.06 , 0, 4 -	30, 30, 3	30	30
	13	0.06, 0, 4 =	30, 30, 6	30	30
	14	0.06 . 0, 4 -	35, 30, 3	30	30
	15	0.06 . 0, 4 -	35, 30, 6	30	30
			-1 104	7	110
	• •	110] ^r ' [~] f	• •
	21	(2012)	6 of 70 -	7	· •

$$= 2_{\mu} + \delta _{1} + \zeta , \qquad (14.14)$$

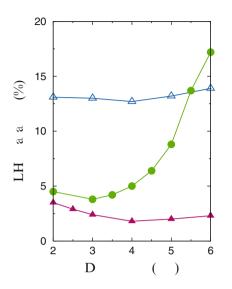
 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

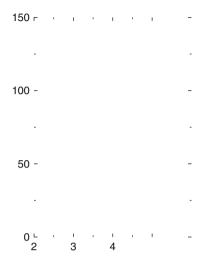

$$= \begin{pmatrix} 1+\delta_{1}+\gamma_{1} & \varsigma_{0}/2\\ \varsigma_{0}/2 & 2+\delta_{2}+\gamma_{2} \end{pmatrix}.$$
 (14.15)


$$1/2/1 = 2/2/2/2 = 2/2/2$$

	0	د 0	γ	0
-9	()	(µ)	(µ 🚽 /)	(🖌)
00	1363	_>	0.15	$+2\ 3$
01	1644	0.1	0.11	+1
02	1650	0.1	0.0	-4
03	1643	0.1	0.0	-4
04	1 42	0,	0.14	-43
05	16,	0.3	0.33	+2,
06	$1 62 \pm 2$	$0. \ \pm 0.3$	$0.\ 5\pm0.0$	-21 ± 5
0	$1 1 \pm 2$	0.4 ± 0.1	$0, 5 \pm 0.06$	-26 ± 3
0	1666 ± 1	$0, \pm 0.$	1.06 ± 0.0	-25 ± 2
0,	1 54	0,	0. ,	-33.5
10	1 14	0.4	0.	-3.4
11	1660	0.	0,6	-40.5
12	$1 06 \pm 5$	$1.2 \pm 0.$	0. 4 ± 0.11	$-14~\pm$
13	$1 \ 2 \ \pm 2$	1.2 ± 0.5	0. 5 ± 0.0 ,	−15 ±,
14	$1, \pm 2$	1.3 ± 1.0	0. 3 ± 0.03	-25 ± 6
15	$1\ 21\pm 2$	$1. \pm 1.4$	$0.\ 4\pm0.0$	-40 ± 5
	0	** . ***.	• 0,	
the second			· 0,, 1, 1, 2 (2,	(14,)
t	21	••••		1 / .

. ..*د*





14
$$I_{a} = 0 = 1, \qquad 0 = 0, \qquad 0 = 0, \qquad 0 = 1, \qquad$$

14
$$l_{a} = 0$$
 $l_{a} = 0$ l