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leading to an uncontrolled error in �HD. Second, in the case of charged defects, �HD,q

depends linearly on the Fermi level (see equation (1
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i.e. EF = eVBM + �EF, where �EF denotes the position of the Fermi level within the
semiconductor band gap (0 < �EF < Eg).

Since the (otherwise divergent) average electrostatic (el) potential within the cell is
conventionally set to zero within the pseudopotential momentum-space formalism [56
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Figure 1. The difference in the atomic-site potentials VGa and VAs between a supercell containing a
vacancyV 3+

As and the defect-free host, shown for 1000 atom supercell (a) and a 64 atom supercell (b).

Addressing primarily the case of molecules in vacuum (ε = 1), Makov and Payne derived
an expression for a third order correction term by decomposing the total charge into a point
charge plus an extended (e), net neutral density ρe(r). In this case, the energy correction
due to the energy of ρe(r) in the potential of the point-charge images (quadrupole–monopole
interaction) is

�E3
i = 2πqQr

3εL3
, (6)

where

Qr =
∫
�

d3rρe (r) r2 (7)

is the second radial moment of the extended charge density. Since, for the case of molecules
in vacuum, ρe(r) is confined within the supercell, the interaction energy between ρe(r) and
its images (without the point-charge contribution) scales as O(L−5 ρ
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Figure 2. The formation energy �H of the V3+
As defect in GaAs (EF = EV, As-rich conditions) as

a function of the inverse linear supercell dimension 1/L = �−1/3 (� = supercell volume, �0 =
volume of the 2 atom GaAs unit cell). (Modified from [25].)

was constrained so as to exclude finite-size effects originating from elastic energies [25].
Less satisfying convergence was observed only for the face-centered cubic (FCC) supercell
symmetries (e.g., 16, 54, 128 atoms), which was attributed to the fact that in these geometries,
the defects are aligned along the (1 1 0) zig-zag chains, which promote strong direct defect–
defect interactions. Consequently, these supercells are generally not recommended for defect
calculations.

While the image charge correction according to equations (5)–(7) proved very successful,
there exist a few conceptional issues regarding the application in semiconductors, which we
address now. First, in their original paper, Makov and Payne surmised that the density entering
the integration of Qr (see equation (7)) should contain only that part of �ρD(r) that does not
arise from electronic screening. However, we found in [25] that Q
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Figure 3. Schematic illustration of a defect supercell (�) in an environment (env) of periodic
images (left) or in an environment of host cells (right).

of identical defect supercells (see figure 3):

�Ei = −
∫
�

dr3(ρ tot
H (r) + �ρp(r) + �ρD(r))

∫
env

dr ′3�ρp(r
′) + �ρD(r

′)
|r − r′| . (8)

Under the approximation that the supercell is large enough so that each unit cell of the pure
host appears as a neutral object on the scale of the supercell (despite being modulated within a
unit cell), we can neglect the interaction energy of ρ tot

H (r) with the total defect-induced density
[�ρp(r

′) + �ρD(r
′)] in the image supercells. Thus, excluding the term involving ρ tot

H (r), we
can express equation (8) as the sum of interactions between the subsystems ρp and ρD:

�Ei
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Figure 4. Finite-size scaling of �H for the V2+
O defect in ZnO (EF = EV, O-rich) in GGA,

calculated with constrained atomic relaxation (diamonds) and with full relaxation (circles). The
image charge correction is determined using ε∞ = 5.0 or ε0 = 10.3.

also contributes to the screening of the image charge energy, so that the total (electronic+ionic),
i.e. the low-frequency dielectric constant ε = ε0 is appropriate, proposed that the supercell
dimension is sufficiently large compared with the effective screening length.

Using 72, 192 and 576 atom supercells of the wurtzite lattice, we show in figure 4 the
finite-size scaling of V 2+

O in ZnO, where there exists a larger difference between ε0 and εe

than, e.g., in GaAs. We determine here εe = 5.0 from a calculation with a periodically
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corrections to the defect formation energy but still rely on the self-consistent LDA defect
calculation [6, 18, 22, 25]. In many cases, however, the very small band gap leads to a spurious
hybridization between the defect states and the host bands, leading to a qualitatively wrong
description of the defect state [27]. In these cases, the gap correction within the self-consistent
calculation is indispensable. In order to correct the band structure of the semiconductor host
within the self-consistent calculation, Christensen [51] introduced additional potentials, which
were empirically adjusted to match the experimental band structure. In a similar spirit, the
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A further difference between NLEP and LDA+U is that the total-energy contribution due to
the NLEP potential is not derived from a model for the electron–electron interaction. Whereas
LDA + U is derived from a (screened) Hartree–Fock-like interaction [61, 62], the NLEP are
treated as simple external potentials. Since, the interaction energy between the electrons and
an external potential is contained in the sum of occupied eigenvalues, no additional terms for
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