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where the square bracket denotes the integer part of pω/
εg

dot. If we extract Eth and λCM from the energy-conservation
function of eq 2 by taking the lower edge of each step, we
obtain the simple expectation that Eth ) 2εg

dot and λCM )
1/εg

dot.
Experimentally,10,12,16,17 the DCM energy threshold Eth and

the DCM coefficient λCM were found to be material depend-
ent, but for a given material to be nearly independent of the
nanocrystal band gap εg

dot, or, equivalently, of the nanocrystal
size. Table 1 summarizes the values of the scaled quantities
Eth/εg

dot and λCMεg
dot obtained from experiment. Surprisingly,

the experimentally determined values of λCM for PbSe, PbS,
CdSe, and Si (Table 1) are larger than those predicted by
the energy-conservation rule (eq 2), although the condition
Neh(pω) < Neh

max(pω) is satisfied by virtue of the relatively
large values of Eth. The coefficients Eth and λCM of eq 1
provide a measure of the efficiency of the DCM process in
different semiconductor nanocrystals. Recent experiments
have questioned the existence of DCM in CdSe18 and InAs19

nanocrystals. Tuan Trinh et al.20 recently confirmed the
occurrence of DCM in PbSe nanocrystals, although with
much lower efficiency than previously reported.10,12

We wish to isolate in this work bulk band structure effects
from surface effects. Thus, we will model here the electronic
levels of the dot by an approach that eliminates surface
effects. The questions we wish to address are as follows: (i)
Is the lack of translational symmetry in nanocrystals the
reason for high carrier-multiplication efficiency and is strong
quantum confinement necessary for efficient carrier multi-
plication? (ii) Competing processes: Can impact ionization
outperform the inverse process of Auger recombination
(Figure 1c), thereby creating a net carrier multiplication
effect? Can DCM be faster than competing decay processes,
such as phonon-assisted relaxation? (iii) Which property of





functional of the single-particle density of states F(ε), so a
correct determination of F(ε) is crucial to accurately deter-
mine R2(E). As shown by eqs 6 and 7, the calculation of
R2(E) may require a very large number of nanocrystal energy
levels εn, if the multiexciton energy E is large. Thus, a direct
calculation of R2(E) using first-principles methods or atom-
istic semiempirical methods (such as tight-binding or pseudo-
potential) would be costly. Here we want to calculate R2(E)
for several nanocrystal materials and nanocrystal sizes. So
we resort to an approximation for calculating the nanocrystal
energy levels.

Although DCM can be affected by both quantum-confine-
ment effects (reflecting the underlying electronic structure
of the confined dot-interior states) and surface special effects,
we are interested in isolating the former.

To do so, we use here the truncated-crystal approximation
(TCA) to calculate the single-particle DOS (eq 5), the single-
exciton and biexciton densities of states (eqs 6 and 7), and
the DCM “figure of merit” R2(E) (eq 4). The idea behind
the TCA24-28 is to obtain the single-particle energy levels
of a nanocrystal (containing many atoms) from the energy
bands of the corresponding bulk material (containing only a
few atoms per cell), calculated at special kj points in the bulk
Brillouin zone, such that the envelope function F(r) ) ∑kjeikj·r

vanishes at the surface of the nanocrystal (Figure 2). This
approach was used over 30 years ago to predict the energy
levels of finite graphene strips from the band structure of
(infinite periodic) graphite or boron nitride24,25 and to
approximate the levels of finite slabs of Si from the Si bulk
band structure.26,28 The TCA approach was later refined and
improved27 to include the effects of a finite potential barrier.
While this does bring about an improvement, we judge that
in the present survey of many materials the trends are not
affected much by this correction. Indeed, the valence-band
and conduction-band offsets between semiconductors and its
the surrounding organic molecules are large in colloidal

nanostructures,29 and the effective mass discontinuity at the
dot surface further enhances the electronic states localiza-
tion.30 Consequently, for a rapid screening of materials, we
will use the infinite-barrier TCA described above instead of
the finite-barrier TCA.27 Also note that the TCA includes
multiple band edge valleys (e.g., Γ, X, and L) but not their
coupling. The inclusion of the effect of higher valleys on
the density of states has been shown27 to be important.

In the TCA the DOS of a nanocrystal is given by

FTCA(ε)) ∑
n)1

Nbands

∑
k

δ(ε- εn,k
bulk

) (11)

where εn,k
bulk

is the energy of the bulk band n calculated at the
special TCA point kj (Figure 2). In this work we consider
cubic nanocrystals, a choice that simplifies the use of the
TCA, compared to other nanocrystal shapes. As shown in
Figure 2 for a cubic nanocrystal of edge L, the set of special
kj points is given by

ki,j,k ) k0 +
π
L

(i, j, k) (12)

that are located inside the bulk Brillouin zone. Here k0 is
the k point of the band edge (CBM or VBM) and i, j, k are



interaction) underestimates the band gap by ≈60% and the
conduction band effective mass by ≈40%. The approach
followed here is to shift the LDA conduction band up to
correct for the band gap error. However, this does not solve
the entire problem because the LDA effective masses are
still incorrect. As a result, the LDA band gap (Figure 3a)
and DOS (Figure 3b) are systematically shifted relative to
EPM. Furthermore, the LDA-predicted band gaps of narrow-
gap semiconductors (e.g., InAs, InSb, GaSb, and Ge) are
negative, so the band-edge states are spuriously coupled. This
significantly complicates the use of LDA within the TCA
approximation. Therefore, in the following we will use EPM/
TCA rather than C-LDA/TCA. The EPM calculated single-
particle density of states as obtained from TCA is given in



a function of the nanocrystal band gap εg
dot showing three

sizes for each dot. There is an overall linear increase of E0

with the band gap, which is evident from Figure 10a. To
remove this linear background, in Figure 10b, we show E0/
εg

dot as a function of the band gap εg
dot. We see from Figure

10b that PbSe, Si, GaAs, CdSe, and InP nanocrystals have
a significantly lower DCM critical energy than GaSb, InSb,
Ge, and InAs nanocrystals. Figure 10a shows that as the dot
size increases, E0 decreases, so larger dots are better than
smaller dots. Figure 10b shows that the normalized E0/εg

dot

sometimes increases (e.g., Si) and sometimes decreases (e.g.,
InAs) as the dot size increases.

The application of nanocrystals as light absorber in solar-
cell devices requires a good match of the nanocrystal
absorption spectrum with the solar spectrum.40 Using a
detailed balance model, Hanna and Nozik41 found that, in
the presence of carrier multiplication, the optimal value of
the nanocrystal band gap is around 0.7-0.9 eV. We find
that PbSe nanocrystals, having sufficiently small band gaps
and sufficiently low DCM threshold, are the best candidates
for DCM-based solar-cell applications. Although Si has low
DCM critical energy and large DCM figure of merit, its

absorption spectrum for small nanocrystal size does not
match the solar spectrum.40

V. Conclusions. The DCM process involves the creation
of two or more electron-hole pairs as a result of exciting a





(iii) Relative to properties (i) and (ii), the importance of
the effective masses for the DCM process is small.

We see from Figure 7 that for all nanocrystal materials
and sizes, R2(E) increases monotonically with energy E. The
“steepness” of the figure of merit R2(E) correlates well with
the experimentally measured values of λCM (see Table 1).
For example, we find that Si and PbSe nanocrystals, which
have a large λCM, also have a large R2(E), while InAs
nanocrystals, which have a small λCM, also have a rather flat
R2(E). Larger values of R2(E) indicate larger DCM efficiency.

Interestingly, by considering band structure effects we find
that as the dot size increases the DCM critical energy E0

(the photon energy at which R2(E) becomes g1) is reduced,
suggesting improved DCM. However, whether the normal-
ized E0/εg increases or decreases as the dot size increases
depends on dot material.
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