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Using the pseudopotential configuration-interaction method, we calculate the intrinsic lifetime and polariza-
tion of the radiative decay of single excitons �X�, positive and negative trions �X+ and X−�, and biexcitons �XX�
in CdSe nanocrystal quantum dots. We investigate the effects of the inclusion of increasingly more complex
many-body treatments, starting from the single-particle approach and culminating with the configuration-
interaction scheme. Our configuration-interaction results for the size dependence of the single-exciton radiative
lifetime at room temperature are in excellent agreement with recent experimental data. We also find the
following. �i� Whereas the polarization of the bright exciton emission is always perpendicular to the hexagonal
c axis, the polarization of the dark exciton switches from perpendicular to parallel to the hexagonal c axis in
large dots, in agreement with experiment. �ii� The ratio of the radiative lifetimes of mono- and biexcitons
��X� :��XX� is �1:1 in large dots �R=19.2 Å�. This ratio increases with decreasing nanocrystal size, approach-
ing 2 in small dots �R=10.3 Å�. �iii� The calculated ratio ��X+� :��X−� between positive and negative trion
lifetimes is close to 2 for all dot sizes considered.
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I. INTRODUCTION

Optically generated excitons in nanocrystal quantum dots
�NQDs� can exist as neutral monoexcitons X �one electron,
one hole, or e-h�, charged excitons X+ �e-2h� or X− �2e-h�,
biexcitons XX �2e-2h�, etc. �see Fig. 1�. Previous experimen-
tal studies have shown1 that the decay of XX in CdSe NQDs
occurs on a fast, sub-100-ps time scale due to efficient non-
radiative
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tion of biexcitons �XX� and charged excitons �X+ and X−�.

II. METHOD

We consider here three CdSe wurtzite spherical dots of
radii R=10.3, 14.6, and 19.2 Å, whose surfaces are passi-
vated by ligand potentials.7 The single-particle energies �i
and wave functions �i are computed using the semiempirical,
nonlocal pseudopotential method described in Refs. 8 and 9.
The pseudopotential is derived from bulk local-density ap-
proximation �LDA� calculations and is adjusted to remove
LDA errors in band gaps and effective masses. The single-
particle Schroedinger equation is solved using a plane-wave
basis set and including spin-orbit coupling. The excitonic
wave functions ��i� are then expanded in terms of single-
substitution Slater determinants �v,
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where n is the refractive index of the medium surrounding
the nanocrystal, F=3� / ��NQD+2�� is the screening factor
�here, �=n2 and �NQD is the dielectric constant of the NQD�,
� is the fine structure constant, 
	ij is the transition energy,
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larized along the z axis �Fig. 4�a��. This effect occurs even
when using only three valence states and one conduction
state �NV=3 and NC=1 in Eq. �1



states from a bright ground state is invoked to explain the
alleged supralinear dependence of the decay rate with emis-
sion frequency.19 This model, however, does not yield quan-
titative agreement with experiment, even when resorting to
accurate tight-binding calculations of the exciton states
which underestimate the decay rate by 75% �Ref. 19�. In-
deed, it has long been established9,14 that in CdSe NQDs, the
lowest-energy exciton level is dark, while the next exciton
level �a few meV higher in energy� is bright �see Fig. 1�a��.
These levels are followed by a multiplet �25–30 meV higher
in energy�



F. Trions

In the trion ground state, the two identical particles are in
a spin singlet state, and therefore the trion ground state does
not exhibit exchange splitting. The positive trion X+ �N=3 in
Fig. 1�b�� shows a bright ground state derived from �e1

1h1
2�,

followed by three dark states derived from �e1
1h1

1h3
1�, two dark

states derived from �e1
1h1

1h4
1�, and two bright states derived

from �e1
1h1

1h2
1�. Radiative recombination of X+ �N=3� results

in a final state with N=1, i.e., a singly occupied hole level hi.
The two lowest-energy states of the negative trion X− �N=3
in Fig. 1�c�� are bright and derive, respectively, from �e1

2h1
1�

and �e1
2h2

1�. The next two levels are derived from �e1
2h3

1� and�
2


