Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots

,^{1,2} A F С ,2 2 М А , ¹Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom ²National Renewable Energy Laboratory, Golden, Colorado 80401, USA (R 5 M 2006; 30 O 2006; , 1 M 2007) , M 7 -, , (X), $(X^+$ X), (XX)C S, -. O, 7 bright .() 7 dark С 7 С . () T $(X): (XX) \sim 1:1$ (*R*=19.2). T 7 2 (*R*=10.3). () T , $(X^+): (X)$ 2 7 .

DOI: 10.1103/P R B.75.115401

PACS , (): 71.15. , 71.55.

I. INTRODUCTION

0 , , (NQD) X(, $X^{+}(e-2h)$ e-h), X (2e-h),F . 1). P , XX (2e-2h),. (XX C S NQD , , -100non-, radiative A ~ 20 X.F A radiative

$(XX) \qquad \qquad (X^+ \qquad X \).$

II. METHOD

				C S	1 7		
	R = 10	.3, 14.	6,	19.2 ,	,		-
				. ⁷ T	-		i
	'		i	,	,		,
		,				R.8	9.
Т	,				,	-	-
		(LDA	()	,		,	
LDA			,			. T	-
	S			,	,	-	
			,	-	,	. Т	
			(<i>i</i>)				_
	,	8					
,	,	3		()	<i>v</i> , <i>c</i>	,	
	-		'	(C)			

$$\left(\frac{1}{c}\right)_{i,j} = \frac{4nF \quad {}^{3}_{ij}}{3c^{2}} |\boldsymbol{M}_{i,j}|^{2},$$
(2)

n

$$n \qquad , F=3 / (_{NQD}+2) \qquad NQD), \\ c \qquad , e^{n^2} \qquad , k = \frac{1}{100} \qquad , k = \frac{1}{100$$

$$^{(\text{SP+C})} = \left(\frac{E_g^{(\text{SP})}}{E_g^{(\text{SP+C})}}\right)^3 \text{ (SP)},$$
(5)

, ,

z along z [F . 4()]. T $N_V=3 N_C=1 E . (1)]$ X. T12

,19 83TD62095414001 9T 0001 0.50010TD,T 001 0.250TD0.0001T 14T 9.9701 0.5011T 0.00014T001 0.250TD0.000

F. Trions

Ι	',	
F . 1()]	, . T ,	$ \begin{array}{c} X^{+} [N=3 \\ (e_{1}^{1}h_{1}^{2}), \\ (e_{1}^{1}h_{1}^{1}) \end{array} \end{array} $
$(e_1^1 h_1^1 h_2^1)$	$(e_1^1 h_1^1 h_4^1),$	$(e_1n_1n_3),$ $X^+ (N=3)$
T F . 1()] $(e_1^2 h_2^1)$. T	N=1,, - , Γ	, h_i . $X \ [N=3]$, $(e_1^2 e_1^1) h284 @rive 924.919 @ TD B @84 @ 0 @84 @ ??ero-temperatur 84 @ ?STD ansi Tf9.T?? j_k (e_1^2 h_3^1)]$