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et al.1 for Vcation-II
0 in CaO and by Das Permmaraju and

Sanvito3 for Vcation-IV
0 in HfO2 considered only neutral defects

and predicted a nonzero magnetic moment. Another mecha-
nism for creating defects with nonzero moment was pro-
posed by Coey et al.4 who suggested a scenario where, e.g.,



establish ferromagnetism in HfO2 requires an enhancing fac-
tor of the uncompensated VHf concentration relative to equi-
librium growth of the order of 108.

II. METHODS

A. Calculation of the magnetic configuration
of a single vacancy

All total energies, atomic forces, and magnetic moments
were calculated via first principles using the projector aug-
mented wave method and the generalized gradient approxi-
mation �GGA-PBE� as implemented in the VASP code.21 The
energy cutoff in the planes wave expansion was 520 eV. All
calculations for the neutral and charge vacancies were per-
formed using a fully relaxed GGA host supercell which con-
tains 96 atoms. Brillouin-zone integration was performed on
a 2�2�2 k-mesh with a Gaussian broadening for the
atomic relaxation and a �-centered 4�4�4 k-mesh using



C. Calculation of the magnetic interaction range

To quantify the ferromagnetic interaction we calculated
the ferromagnetic stabilization energy �EFM�d�=EAFM�d�
−EFM�d� by placing two VHf

0 defects at separation d in the
supercell and calculate via GGA the difference between the
ferromagnetic �FM� and antiferromagnetic �AFM� total ener-
gies where all atomic positions are relaxed.

D. Calculation of the percolation staircase

The calculation of the percolation staircase is done �as
described in the Appendix� considering vacancies that ran-
domly occupy the sites of an infinite periodic lattice � with
occupation probability �concentration� x=c�V� /N, where N
is the total number of sites. Two such vacancies interact if
they are separated by less than distance d. We find the per-
colation threshold function xperc�� ,d� by a finite-size analysis
of Monte Carlo simulation results. Since xperc�� ,d� may
change its value only at the discrete values of d

=d1NN�



1�c� and 1�d�, respectively. These gap states are very local-
ized and well below the CBM, showing that the polaron
model �requiring an overlap of this level with the conduction
band� is not fulfilled.

B. Results for the formation enthalpies and transition energies
of Hf and O vacancies and equilibrium concentration of

magnetic defects in HfO2

Figure 3 shows the formation enthalpies as a function of
Fermi energy for Hf and O vacancies in HfO2. Under Hf-rich
growth conditions �dashed lines� and for all values of the
Fermi energy, the nonmagnetic defects of



lower than c�VHf
Total�. This is due to either the ionization of

holes into the non-spin-polarized valence band �Tgrowth

�2000 K� or due to compensation by VO
2+ �Tgrowth

2000 K�.

C. Results for the range of VHf-VHf

magnetic interactions in HfO2

Table I gives the ferromagnetic stabilization energy
�EFM�d�=EAFM�d�−EFM�d� obtained by placing two VHf

0 de-
fects at separation d in a 96-atom supercell. We see that the
stabilization energy is rather strong for the first neighbors
and then it starts to decrease rapidly. At the first neighbor the
ferromagnetic stabilization energy is 205 meV and at the
“fifth” neighbor �see below, Sec. III D� the ferromagnetic
stabilization energy is 39 meV. We further considered the
moment-carrying VO

− state ��=1�B� of the oxygen vacancy
as a possible source of ferromagnetism. We find, however,
antiferromagnetic coupling—e.g., �EFM�d�=−74 meV for
close vacancy pairs with d=2.6 Å �sharing two cations�, fall-
ing off to �EFM�d�=−8 meV for more distant pairs with d
=6.4 Å. Thus, we conclude that oxygen vacancies are not
responsible for ferromagnetism.

D. Results for the percolation threshold for the cation
sublattice of the HfO2 Baddelayite structure

Figure 5 shows the calculated percolation threshold stair-
case and the cationic shell structure of HfO2. The cationic
shell structure is rather complex in the Baddelayite structure
in comparison with other oxides �e.g., CaO, TiO2�. The Bad-
delayite structure shows 16 shells at a distance less than 6 Å,
where some of then can be considered as “degenerate”; i.e.,
the distance between different shells is less than 0.25 Å. For
all the shells the numbers of neighbors is not larger than two
atoms. Due to the complexity of this structure, we have av-
eraged out some of the shells that fall in our “degenerate”
definition to carry out the calculation of the percolation
thresholds. From the percolation staircase we can see that the
minimal Hf vacancy concentration needed to establish per-
colation on the HfO2 lattice at d=d1NN is x=30.5%. This
minimal concentration falls when the distance of the interac-
tion between two Hf vacancies increases. We have calculated
the minimal concentration needed to establish percolation up
to the fifth shell, where this concentration is x=13.5% on the
HfO2 lattice. Thus, the calculated equilibrium Hf vacancy
concentration of charge states which lead to nonzero mag-
netic moments falls short by eight orders of magnitude from
the minimal percolation density. Thus, to establish ferromag-
netism in HfO2 requires an enhancing factor of defect con-
centrations relative to equilibrium of the order of 108.

IV. CONCLUSION

The theoretical prediction of ferromagnetic semiconduc-
tors or insulators requires the assessment of several condi-
tions, concerning the deviation from the ideal host lattice,
which need to be met simultaneously. We addressed these
conditions in a case study of ferromagnetism in HfO2 with-
out magnetic ions: �i� Which defects in which charge states
carry a magnetic moment and, thus, are candidates to pro-
mote ferromagnetism? �ii�



APPENDIX: PERCOLATION STAIRCASES
IN COMMON LATTICES

Substitution of the host lattice sites by guest atoms X
generally leads to modification of the system properties. No-
table examples include impurity doping of semiconductors
leading to electrical conductivity,31,32 substitution of the non-
magnetic host by magnetic ions leading to ferromagnetism,33

the formation of bond length anomalies upon isovalent
alloying,34 and the appearance of new phonon bands upon
alloying light-mass impurities in heavy-mass host lattices.35

A special type of property change upon alloying or doping
occurs when the interaction between the guest atom X leads

to the onset of a macroscopic effect when the interacting
atoms form an infinite connected cluster.20 When this hap-
pens we say that the interaction percolates the system.
Whereas any amount of substitution of the host by X can lead
to some property change, the occurrence of “wall-to-wall”
percolation leads to the onset of collective effects, such as
the formation of metallic impurity bands,31,32 collective
ferromagnetism,33 bond length singularities,34 and phonon
anomalies and anomalous microhardness.36–40

The smallest concentration xperc sufficient for establishing
percolation is called the percolation threshold. Clearly, the
value of xperc

�,n depends on lattice type � �fcc, bcc, sc, etc.�
through its topological site connectivity and on the interac-
tion radius Rn within which an X atom “sees” another atom

FIG. 6. �Color online� Percolation threshold and number of
nearest neighbors �NN� vs cation-cation distance for the rocksalt
crystal structure �fcc� cation sublattice.

FIG. 7. �Color online� Percolation threshold and number of
nearest neighbors �NN� vs cation-cation distance for the La2O3

crystal structure �bcc� cation sublattice.

FIG. 8. �Color online� Percolation threshold and number of
nearest neighbors �NN� vs cation-cation distance for the CsCl crys-
tal structure �sc� cation sublattice.

FIG. 9. �Color online� Percolation threshold and number of
nearest neighbors �NN� vs cation-cation distance for the diamond
crystal structure.

NONSTOICHIOMETRY AS A SOURCE OF MAGNETISM IN… PHYSICAL REVIEW B 75, 184421 �2007�

184421-7



X. The interaction radius depends in turn on the physical
property being considered. While for mechanical properties34

Rn might be confined to the atomic radius of X �and thus
percolation exists when nearest neighbors form a continuous
cluster�, for magnetic X-X interactions Rn might be the range
of the Heisenberg exchange between the magnetic ions, and
it can extend to 5–15 neighbors.6,41,42

In the past xperc
�,n was calculated for many types of discrete

problems �site and bond percolation, directed percolation,
bootstrap percolation, etc.� for simple lattices such as �
=fcc, bcc, sc and mostly for n=first nearest neighbors.43,44

Two types of methods for estimating xperc have been used:
analytic �series expansion, � expansion, etc.� and Monte
Carlo. We will use the Monte Carlo method since it can be
applied it to arbitrary lattices with arbitrary interaction dis-
tance. We restrict this study to an analysis of percolation and
will not analyze other critical properties.

Method of calculation. Consider guest atoms X that ran-
domly occupy the sites of an infinite periodic lattice � with
occupation probability �concentration� x. Two atoms X inter-
act if they are separated by less than45 Rn. Our model is a
generalization of the classical site percolation model20 �in
which Rn is just the nearest-neighbor distance� and could
serve to describe, for example, ferromagnetism in dilute
magnetic semiconductors,33 in which the range Rn of ex-
change interactions between the magnetic ions is much larger
than the nearest-neighbor distance.6,41,42 On a given lattice �,
we find the percolation threshold function xperc

�,n by a finite-
size analysis of Monte Carlo simulation results. Since xperc

�,n

may change its value only at the discrete values of Rn
=R1NN,R2NNRn3 3R n3 3 �



rities occupy only a subset �=�i� ¯ �� j of those sublat-
tices �where �i , . . . , j�� �1, . . . ,N��. This corresponds to an
impurity atom X substituting for only a particular constituent
in an ordered compound, whereas different choices of � for a

fixed �̃ correspond to either different types of ordering or to
order-disorder transitions. The numerical procedure for find-

ing the percolation threshold remains unchanged; however,
we will define x̃perc as the average concentration of impurities

with respect to the parent lattice �̃, so as to be able to com-
pare the results for different types of ordering of the same
amount of impurity atoms. The results for such pairs are
shown in Fig. 11.
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