increasing height results from the fact that for tall dots the

hole states are of $\bar{1}$ (*S*-like) symmetry. The Bloch part of the electron state is of 1 symmetry in zinc-blende structure. The electron states in the following are therefore, including spin, twofold Xramer's) degenerate. Furthermore, the contribution of the valence $|Z\rangle$ band in the hole states is neglected since it is pushed down in energy through the strong confinement in z direction δ for flat dots). We will proceed in steps from the idealized cylindrical symmetry neglecting at first the spin-orbit interaction [Fig. 3 α a], to the full atomistic symmetry (C_{2v}) in the presence of the spin-orbit interaction [Fig. $3'd$]. We will show how the observed FS is the result of the atomistic symmetry in presence of the spin-orbit interaction.

Cylindrical symmetry, no spin-orbit interaction [Figs. $3a$] and (4α)]. In this case, the hole states are eigenfunctions of the angular momentum $l=1$ as depicted in Fig. 4 λ a). The spin parts of the wave functions are written as $|\uparrow\rangle$ and $|\downarrow\rangle$. Due to the equivalence of the wave functions $|X\rangle$ and $|Y\rangle$ in cylindrical symmetry, the four hole states are degenerate. The resulting eight exciton states λ two electrons, four holes) are split by the exchange interaction K singlet-triplet splitting) into two $S=0$ and six $S=1$ states.

 $\int_{\alpha} C_{2v}$ *symmetry, no spin-orbit interaction* [Figs. 3.b) and (4^kb)]. The spin-independent C_{2v} potential does not have the ability to mix spins. However, it will mix the orbital parts of isospin hole states creating the eigenstates given in Fig. 4b, where the C_{2v} point-group notation¹⁷ has been used. We ob t_{eff} by t_{2y} point-group hotation has been used. We obtain two pairs of eigenfunctions whose orbital parts belong to the $_2$ and $_4$ representations and spin parts to the $_5$ representation. The splitting of these two pairs is due to the nonequivalence of the $\vert_{2v}\rangle$ and $\vert_{4v}\rangle$ Bloch functions λ atomistic asymmetry), reflected in the atomistic asymmetry parameter = ${}_{2v}H_{C_{2v}}|_{2v}$ \rightarrow ${}_{4v}H_{C_{2v}}|_{4v}$, which is characteristic of the C_{2v} potential. The previously fourfold degenerate hole states split into two by 2 . Consequently, the *exciton* states are split by the atomistic asymmetry 2 and further split into singlet and triplet by the exchange term K $[Fig. 3**b**].$

 $Cylindrical symmetry, with spin-orbit interaction [Figs.$ 3° c) and 4° c)]. The spin-orbit interaction splits the hole states with respect to their total angular momentum *J*. Thus, the $J_z = 3/2$ hole states $a \uparrow$ and $b \downarrow$ will split by 0 from the J_z $=1/2$ states $a \downarrow$ and $b \uparrow$ [see Fig. 4^f,c)]. Considering only the first two hole states $(a \uparrow, b \downarrow)$ and the electron states $(e \downarrow,$ *e*↑), the exchange Hamiltonian in the basis of the four excitons $(a \uparrow e \uparrow)$, $(a \uparrow e \downarrow)$, $(b \downarrow$