increasing height results from the fact that for tall dots the

hole states are of $_1$ (*S*-like) symmetry. The Bloch part of the electron state is of $_1$ symmetry in zinc-blende structure. The electron states in the following are therefore, including spin, twofold Kramer's) degenerate. Furthermore, the contribution of the valence $|Z\rangle$ band in the hole states is neglected since it is pushed down in energy through the strong confinement in *z* direction for flat dots). We will proceed in steps from the idealized cylindrical symmetry neglecting at first the spin-orbit interaction [Fig. 3.'a)], to the full atomistic symmetry (C_{2v}) in the presence of the spin-orbit interaction [Fig. 3.'d)]. We will show how the observed FS is the result of the atomistic symmetry in presence of the spin-orbit interaction.

Cy[indrical symmetry, no spin-orbit interaction [Figs. 3. a) and 4. a)]. In this case, the hole states are eigenfunctions of the angular momentum l=1 as depicted in Fig. 4. a). The spin parts of the wave functions are written as $|\uparrow\rangle$ and $|\downarrow\rangle$. Due to the equivalence of the wave functions $|X\rangle$ and $|Y\rangle$ in cylindrical symmetry, the four hole states are degenerate. The resulting eight exciton states two electrons, four holes) are split by the exchange interaction K singlet-triplet splitting) into two S=0 and six S=1 states.

 C_{2v} symmetry, no spin-orbit interaction [Figs. 3.'b) and (4, b)]. The spin-independent C_{2v} potential does not have the ability to mix spins. However, it will mix the orbital parts of isospin hole states creating the eigenstates given in Fig. 4b, where the C_{2y} point-group notation¹⁷ has been used. We obtain two pairs of eigenfunctions whose orbital parts belong to the $_2$ and $_4$ representations and spin parts to the $_5$ representation. The splitting of these two pairs is due to the nonequivalence of the $|_{2v}\rangle$ and $|_{4v}\rangle$ Bloch functions atomistic asymmetry), reflected in the atomistic asymmetry $= {}_{2v}|H_{C_{2v}}| {}_{2v}\rangle - {}_{4v}|H_{C_{2v}}| {}_{4v}\rangle$, which is parameter characteristic of the C_{2v} potential. The previously fourfold degenerate hole states split into two by 2 . Consequently, the *exciton* states are split by the atomistic asymmetry 2 and further split into singlet and triplet by the exchange term K[Fig. 3^b].

Cylindnical symmetry, with spin-orbit interaction [Figs. 3, c) and 4, c)]. The spin-orbit interaction splits the hole states with respect to their total angular momentum J. Thus, the $J_z = 3/2$ hole states $a\uparrow$ and $b\downarrow$ will split by $_0$ from the $J_z = 1/2$ states $a\downarrow$ and $b\uparrow$ [see Fig. 4, c)]. Considering only the first two hole states $(a\uparrow, b\downarrow)$ and the electron states $(e\downarrow, e\uparrow)$, the exchange Hamiltonian in the basis of the four excitons $(a\uparrow e\uparrow)$, $(b\downarrow)$