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the size distribution compared with higher ageing temperatures. (iii) After the initial formation
of precipitates within the first few seconds for a given temperature and concentration, the short-
range order parameters of the alloy only show a weak time dependence. In the following, we
show that it is possible to predict, describe, and understand these effects via an atomistic,
first-principles LDA-based cluster expansion [21]. Using our theoretical model, we will study,
as a function of ageing time, (i) the distribution of Zn clusters at different temperatures, (ii) the
number of precipitates, and (iii) the time evolution of the short-range order of the alloy. We
will compare our results with those expected from classical Ostwald ripening which would
predict a t1/3 evolution for the average precipitate diameter.

2. Method

2.1. Cluster expansion of substitutional configurational energies

The energy ECE(σ ) of substitutional configurations is given by a mixed-space cluster expansion
(MSCE) [21]. In this approach, any configuration σ is defined by specifying the occupations
of each of the N lattice sites by an Al atom (spin index Ŝi = −1) or a Zn atom (Ŝi = +1). The
formation enthalpy of any substitutional configuration σ at its atomically relaxed state is then
given by

�HCE(σ ) =
∑

k
Jpair(k)|S(k, σ )|2 +

MB∑

f

Df Jf �̄f (σ ) +
1

4x − 1

∑

k
�E

eq
CS(k̂, x)|S(k, σ )|2.

(1)

The first sum describes all possible pair figures. It is expressed in reciprocal space, thus
affording a converged description of even long-range pair interactions [28]. Here, Jpair(k)

is the lattice Fourier transform of the real-space pair interactions, and S(k, σ ) are structure
factors. The second sum describes many-body (MB) figures, such as triangles, tetrahedra, etc.
Here, Jf is the real-space many-body interaction of figure f , Df stands for the number of
equivalent clusters per lattice site, and �̄f (σ ) are spin products. The last term in equation (1)
describes the constituent strain energy necessary to maintain coherency between bulk Al and
fcc Zn along an interface with orientation k̂. It can be calculated by deforming the bulk elements
(Al and fcc Zn) from their equilibrium lattice constants aAl and aZn to a common lattice constant
a perpendicular to k̂. We see that the first two terms in equation (1) describe atomistically
the ‘chemical energy’ of a configuration, while the third term describes the anisotropic (and
generally anharmonic) long-range strain energies.

We determine {Jpair(k)} and {Jfnd
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spin-flips always correspond to geometrically fully relaxed configurations. This is guaranteed
by our MSCE-Hamiltonian of equation (1). (ii) Our model does not have vacancies. (iii) In
order to consider the energy barriers between different configurations, we accept information
from experiment: our jump frequencies, 1/τ0, as a function of temperature T were taken from
the experimental diffusion constant Dexp(T ) via

τ0(T ) = a2
nn

Dexp(T )
, (2)

where ann
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forbid this second step in the simulation, we would be confronted with a non-Markovian
process demanding a complex reconsideration of the function between experimental diffusion
constant and the computer time unit ‘MCS’. Furthermore, the following question arises: for
how many MCSs the ‘returning’ event has to be forbidden. Even if we do not allow for a
certain Zn atom to jump back to the precipitate surface in MCS number j , from which it was
removed in MCS number j − 1, it is very likely that this ‘returning’ event will happen in MCS
number j + 1. The best solution for the above problem seems to be an algorithm where the
chosen Zn atom is forced to jump without destroying the Markovian process. This is realized
in the following algorithm—algorithm II:

1. Find all of the N Zn atoms in a random configuration and order them by site indices.
2. Determine all the possible jumps S for each of the N Zn atoms (for an fcc lattice

Smax = 12N , if all Zn atoms would only have Al atoms as neighbours).
3. Calculate the energy change δE(i) for each allowed jump for all Zn atoms (i = 1, . . . , S).
4. If δE(i) > 0, calculate Wi = (1/τ0) exp(−δE(i)/kT ). If δE(i) < 0, calculate

Wi = 1/τ0.
5. Calculate Pi = Wi/Wtot, where Wtot = ∑S

i=1 Wi .
6. Select randomly one jump i from the S possible events according to their probability Pi .
7. Calculate the new total simulation time tMCS = tMCS−1 + 1/Wtot. (Note that Wtot =∑S

i=1 Wi is not a constant, but is different for each MCS. So, recording tMCS after each
MCS is a ‘must’.)

8. Recalculate all δE(i)’s.
9. Go back to step 4.

The efficiency of this method strongly depends on the question of whether the calculation of
the new δE(i)’s (step 8) is time intensive. An accepted spin-flip demands a recalculation of
S(k, σ ) in equation (1). However, as shown by Lu et al [32], the MSCE method allows one to
avoid the necessity of recalculating S(k, σ ) after each move by directly calculating the change
in Jpair(k)|S(k, σ )|2 for each move in real space [32]. In practice, algorithm II is clearly slower
for short ageing times and high temperatures, i.e. where nearly every flip is accepted. The
advantage of algorithm II lies in the simulation of long ageing times. As we can see from
step 4 of the algorithm description, now a single MCS is no longer a constant real time unit,
but depends on the corresponding probability Wtot. In practice, one MCS can now represent
real times of 1/1000 s up to many minutes. As a rough rule, we can conclude that algorithm II
is to be preferred, if one MCS corresponds to a real time of about 1 s.

It should be mentioned that in algorithm II a single MCS corresponds indeed to only one
flip of one Zn atom and not one trial-flip of each Zn atom. Since flip channel i is always
chosen randomly and we mostly consider a large number of Zn atoms (e.g. 1000–15 000), the
probability that the same Zn atom is chosen in MCS i, when it was already chosen in MCS
i − 1, is very small. So, due to the large system size, it is not necessary to forbid any kind of
jumps between Al and Zn atoms, i.e. we do not have to give up the restriction that the algorithm
should be based on the Markovian process. The concept of algorithm II is very similar to that
of the so-called ‘residence-time algorithm’ [11], where also one transition is performed at each
MCS. Different from the work of Soisson et al [33], who applied such an algorithm to study
Cu precipitation in Fe–Cu alloys, our model does not consider any vacancy jump mechanism.
Also, in our calculation the configurational part of the energy is treated with LDA accuracy.
Our present kinetic simulations are restricted to nearest-neighbour jumps only. This is not
generally justified, although it was already successfully applied in the literature (see e.g. [18]).
For certain applications, a necessary extension to second, third, and further neighbour jumps
may be needed.
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Thermodynamic-MC Kinetic-MC

Figure 2. Comparison between equilibrium configurations for an Al0.92Zn0.08 alloy resulting from
thermodynamic and kinetic MC simulations (only Zn atoms are shown).

Both algorithms fulfil the condition of detailed balance. Although the kinetic MC
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Table 1. Calculated SRO parameters (equation (4)) of an Al0.92Zn0.08 alloy (T = 300 K) via
kinetic and thermodynamic MC. The values correspond to the configurations shown in figure 2.

(lmn) αthermo
lmn αkin

lmn

000 1.000 1.000
110 0.704 0.700
200 0.646 0.628
211 0.615 0.601
220 0.590 0.586
310 0.568 0.566
222 0.536 0.519
321 0.527 0.511
400 0.519 0.503
330 0.499 0.477
411 0.502 0.478
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T = 200 K T = 300 K

t = 30 sec

t = 1 min

Figure 4. Zn precipitates in Al–Zn for two different ageing temperatures and times. For a constant
ageing time, a higher ageing temperature leads to larger, but less, precipitates (only Zn atoms are
shown).
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Figure 5. Logarithmic plot of number of precipitates versus ageing time in an Al0.932Zn0.068 alloy
(11 942 Zn atoms) for three different temperatures. The slope of all three curves is very close to
−1, i.e. the expected value for classical Ostwald ripening (- - - -).

classical Ostwald ripening. The fluctuations within each individual curve come by the limited
system size. So, e.g. for an ageing temperature of 250 K and an ageing time of 5 min, there are
only ten precipitates left leading to quite poor statistics. Figure 6 displays the ‘mean diameter’,
dm, of all precipitates as a function of ageing time for T = 250 K. Here, dm represents the
diameter of the corresponding sphere having the same volume as the observed precipitate.
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Figure 8. Distribution of precipitates for three different ageing temperatures (t = 30 s).

4. Dependence of SRO on ageing time and temperature

The short-range order (SRO) can be described in terms of the Warren–Cowley SRO parameters
which are given for shell (lmn) by

αlmn(x) = 1 − P
A(B)
lmn

x
, (3)

where P
A(B)
lmn is the conditional probability that, given an A atom at the origin, there is a

B atom at (lmn). The sign of α indicates qualitatively whether atoms in a given shell prefer
to order (α < 0) or cluster (α > 0). The SRO parameter may be written in terms of the pair
correlations as

αlmn(x) = 〈�̄lmn〉 − q2

1 − q2
, (4)

where q = 2x − 1 and 〈�̄lmn〉 is the pair correlation function for shell (lmn). In diffraction
experiments, the portion of diffuse scattering due to SRO is proportional to the lattice Fourier
transform of αlmn(x):

α(x, k) =
nR∑

lmn

αlmn(x)ei · k · Rlmn . (5)
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