
PHYSICAL REVIEW B 15 APRIL 2000-IVOLUME 61, NUMBER 15
iÞ0), however, the wave functionseInAs andhGaSbhave the same symmetry,
so they anticross. This opens up a ‘‘hybridization gap’’ at someki5ki* . Using a pseudopotential plane-wave
approach as well as a~pseudopotential fit! eight-bandk•p approach, we predict the hybridization gap and its
properties such as wave-function localization and out-of-plane dispersion. We find that recent model calcula-
tions underestimate this gap severely.
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I. INTRODUCTION

On an absolute energy scale, the valence-band maxim
~VBM ! of GaSb is higher in energy than the conductio
band minimum~CBM! of InAs.1 Consequently, a GaSb/InA
heterojunction should be metallic, with the InAs-localiz
electron levelseInAs below the GaSb-localized hole leve
hGaSb. In (InAs)n /(GaSb)n superlattice geometry, quantum
confinement will pusheInAs to higher energies andhGaSb to
lower energies, thus opening up a semiconducting band
at sufficiently small periodsn,nc . Early experiments2,3 in-
deed suggested a transition from semiconductor atn,nc to
semimetal atn.nc . However, in 1983, Altarelli4 pointed
out that even forn.nc there could be a semiconducting ga
since at some in-plane wave vectorki the stateseInAs and
hGaSbhave the same symmetry representation, they mustan-
ticross ~rather than cross!, thus opening a finite gap.@Here
ki5(kx ,ky) indicates the transverse, two-dimensional wa
vector parallel to the substrate plane, whilekz denotes the
wave vector component parallel to the superlattice gro
direction. The Brillouin zone is shown in Fig. 1.# Performing
calculations in thek•p envelope function approximatio
~EFA!, Altarelli4 found indeed a semiconducting gap ev
for n.nc at some in-plane wave vectorski* . Previous ex-
perimental observations of semimetallic behavior2,3 were in-
terpreted by Altarelli4 as being due to the abundant defe
that fill in the band-gap region. In 1997, Yanget al.5 indeed
detected, using capacitance-voltage measurements
(InAs)46/(GaSb)14 superlattices, a small band ga
('4 meV) in the in-plane dispersion. This has prompt
theoretical interest in predicting the semiconducting gap
nominally semimetallic superlattices.6–8 In this paper we use
a pseudopotential plane-wave approach to predict the hyb
ization gap and its properties such as wave function local
tion and dispersion relations. We also compare our result
those obtained by approximate models such as eight-b
k•p ~finding good agreement, provided that the parame
are drawn from pseudopotential calculations!, and to a recent
model calculation by de-Leonet al.6 ~finding poor agree-
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ment!. We also find that whereas Altarelli’s model predic
but one hybridization gap thus suggesting semiconduc
~rather than semimetallic! behavior atn.nc , our multiband
model shows that for long period superlattices there are m
tiple anticrossings. This would lead to a quasisemimeta
behavior, not semiconducting.

II. SYMMETRY-MANDATED BAND COUPLING AND
ANTICROSSING IN III-V SUPERLATTICES

Since the semiconducting gap represents anticrossing
tween two levels, one must understand and predict the ef
tive coupling potentialVe-hh

(n) (ki ,kz) between the relevant an
ticrossing states.

There are three outstanding problems of anticrossing
band coupling in semiconductor superlattice physics, t
were treated in the past by the ‘‘standard model,’’ i.e., EF

~i! The G2X coupling VG,X in (AlAs) n /(GaAs)n ~001!
superlattices, which leads to anticrossing ofG1c-like and

FIG. 1. Brillouin zone for the tetragonal symmetry of th
(InAs)n /(GaSb)m ~001! superlattices. The crystal primitive ce
along thez axis is of lengthLz5(n1m)a anda is the zinc-blende
lattice constant.
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X1c-like levels in superlattices, as one applies pressure9~a!

electric,9~b! or magnetic9~c! fields. This nonzero coupling ca
be described via atomistic theories such as tightbinding10 or
pseudopotentials,11 but vanishes in the standard model EF

VG,X
EFA50. ~1!

Pseudopotential calculations11 quantitatively predicted this
coupling potential vs the superlattice periodn, showing that
it vanishes forn5odd, and obtaining the effects of pressu
is in good agreement with experiment.

~ii ! The light-hole to heavy-hole coupling Vlh,hh in ~001!
superlattices, which leads atki50 to the observed12,13 anti-
crossing oflh1 with hh2 excitons. In theD2d point group
symmetry of a~001! superlattice having acommon atom
~such as AlAs/GaAs!, or in the C2v symmetry of non-
common-atom~001! superlattices such as InAs/GaSb, thelh1
andhh2 states have the sameG7 symmetry representation, s
they must anticross rather than cross. Atomistic theories s
as tightbinding14 and pseudopotential15,16 for the D2d super-
lattices, and pseudopotential8 theory for theC2v superlat-
tices, indeed produce8,14–16 anticrossing atki50 @see Fig.
3~b! in Ref. 8#. On the other hand, the standard EFA, bein
continuum theory, lacks this anticrossing atki50, since it
assumes

Vlh,hh
EFA ~ki50!50 ~2a!

and

Vlh,hh
EFA ~kiÞ0!Þ0. ~2b!

The effects of theVlh,hh(ki50) coupling are amplified enor
mously in C2v non-common-atom superlattices such
GaInAs/InP~001! or InAs/GaSb~001! and reveal themselve
through a giant in-plane polarization anisotropy in the opti
absorption,17 which is not present inD2d superlattices. While
atomistic modelsforce lh-hh mixing atki50 upon us by the
very nature of the symmetry properties of the relevant sta
such mixing can only beaccommodatedin the standard
model of EFA if additional terms are added ‘‘by hand’’ t
the boundary conditions at the interface18 or to the EFA
Hamiltonian.17 The theory itself does not provide the magn
tude of Vlh,hh(ki50), which thus needs to be supplied e
ternally.

~iii ! The electron–heavy-hole coupling Ve,hh in non-
common-atom superlatticesthat leads~a! at ki50, to a small
anticrossing gap atn5nc

8 as well as to an in-plane polariza
tion anisotropy in the optical absorption8 and~b! at kiÞ0 to
the ‘‘hybridization gap’’ forn.nc .5 Again, atomistic theo-
ries predict theki50 anticrossing gap and theki50 polar-
ization anisotropy.8,19 The standard model of EFA, howeve
results in

Ve,hh
EFA~ki50!50 ~3a!

and

Ve,hh
EFA~kiÞ0!Þ0. ~3b!

So while EFA-based methods can explain at least qua
tively the in-planekiÞ0 hybridization gap underlying Eq
~3b!, they cannot account for the anticrossing behavior
ki50 for n5nc ~electron and hole states cross in EFA rath
ch
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than anticross! nor theki50 polarization anisotropy. Note
that Eq. ~3a! is a consequence of the fact thatVlh,hh

EFA (ki
50)50. Again, it is possible to add by hand addition
terms to EFA to introduce the missing band couplings20

However, the value of the coupling constant is undetermin
by that theory.

III. CALCULATION OF THE HYBRIDIZATION GAP

We see from the forgoing discussion that the problem
predicting the hybridization gap in non-common-atom sup
lattices is relatively easy, because already the standard m
grants a nonzero coupling in Eq.~3b!. This should be con-
trasted with the more difficult problems of predicting theki
50 lh-hh coupling@Eq. ~2a!# or theG2X coupling@Eq. ~1!#,
where, by itself, the standard model provides a null effe
However, the problem of determining the hybridization g
is not entirely trivial, because it is not obvious whether EF
gives the rightmagnitudeof the gap. There are two reason
to raise this question:~1! The absence ofVe,hh

EFA(ki50) can
affect theVe,hh(kiÞ0) coupling and thus the hybridizatio
gap atkiÞ0; ~2! the e-hh coupling comes from the interac
tion between the InAs-localized electron state and the Ga
localized heavy-hole state. The magnitude of these coupl
sensitively depends on the detailed boundary conditions u
at the interface, which are an unsettled issue in the E
theory.18,21,22

While EFA-based models of band coupling involve com
plex discussions of various boundary condition choices~e.g.,
see Refs. 6, 18, 21, and references therein!, atomistic models
are free from such ambiguity, directly provide the magnitu
of the coupling constants, and are simple to apply. Rec
pseudopotential calculations on (InAs)n /(GaSb)n ~001!
superlattices8 indeed demonstrated~1! the existence of in-
plane polarization anisotropy of thee-hh transitions atki
50; ~2! the occurence ofe1-hh1 mixing atki50 around
n528; and~3! the anticrossing of the second and third ho
states lh1 and hh2 atki50. Because of Eq.~3a! these prop-
erties could not be predicted by the standardk•p approach.
Here we use the same pseudopotential model to study
kiÞ0 dispersion in (InAs)n /(GaSb)m superlattices strained
to the lattice constant of a GaSb substrate, thus determi
the anticrossing gap.

In the pseudopotential theory (P theory! used here,8 the
single-particle Schro¨dinger equation is given by

F2
b

2
¹21(

na
va~r 2Rna!Gc i~r !5e ic i~r !, ~4!

whereRna denotes the position of thenth atom of typea.
The atomic positions are determined by minimizing the a
mistic strain energy of the superlattice.8 This results in the
InAs and GaSb segments having tetragonalc/a ratios close
to one, whereas the two interfaces have a dilated InSb b
(c/a51.13) and a compressed GaAs bond (c/a50.85). The
screened pseudopotentials$va% are determined8 by fitting to
the measuredall-zone~i.e., not justG) bulk band structures
of InAs and GaSb~including anisotropic effective masses!,
and to the local-density approximation~LDA ! calculated
band offsets and deformation potentials. Spin-orbit inter
tions are included as a nonlocal part ofva . The coefficientb
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thicknessesn and m are changed. We have considered
(InAs)30/(GaSb)30 superlattice with the same totaln1m pe-
riod as the previously studied (InAs)46/(GaSb)14 superlat-
tice. The pseudopotential calculated in-plane dispersion r
tions of the two superlattices along thekx5ky direction at
kz50 are compared in Fig. 4. Since the well widths det
mine the confinement energies, using the~30,30! period
rather than~46,14! leads to a more confined electron~since
the InAs electron well is now narrower! and to a less con
fined heavy hole~since the GaSb hole well is now wider!.
Thus, the~30,30! superlattice has a smaller~negative! gap at
ki50 than the~46,14! superlattice. The negative gap atki
50 is now 17 meV, i.e., about one-fourth of the correspo
ing gap of the~46,14! superlattice. Since the electron an
heavy-hole bands are already closer to each other atki50
than in the~46,14! case, the anticrossing pointki* occurs

FIG. 3. Evolution of the wave function of the last occupied st
~left column! and the first unoccupied state~right column! of the
(InAs)46(GaSb)14 ~001! superlattice along the in-planeki5(kx

5ky) direction atkz50. Wave functions are averaged over t
in-plane coordinates.

TABLE I. Pseudopotential~P! andk•p calculated hybridization
~H! gaps for a (InAs)46(GaSb)14 ~001! superlattice. The band offse
between the strained InAs CBM and GaSb VBM is 190 meV.
parentheses we give the band gaps obtained with a 150-meV o

Method E(ki50) ~meV! EH(ki5k* ) ~meV!

kz50 kz5
p

Lz
kz50 kz5

p

Lz

P theory 65 45 25 8
k•p 68~32! 38~8! 29~22! 8~1.5!
a-

-

-

closer to the Brillouin zone center. However, we see that
interactionVe-hh in this region given by the pseudopotenti
theory is relatively strong, and, as a consequence, the hyb
ization gap is 15 meV wide, not much smaller than the ne
tive gap atki50.

We have also examined the interband transition dip
matrix elements for the~30,30! superlattice and found that
while the transitions atki50 have the same intensity a
those in the~46,14! superlattice, both the intensity and th
polarization anisotropy of the transitions atki* are smaller
that those we have found in the~46,14! superlattice. Thus,
we see that, the closerEH is to ki50, the less intense an
anisotropic are the interband transitions.

E. Comparison of pseudopotential and model calculations

Figure 5 compares the pseudopotential results w
the model calculation of de-Leonet al.6 for the
(InAs)46(GaSb)14 system. The model of Ref. 6 describes t
system as an InAs electron well interacting with a GaSb h
well, both wells being sandwiched between infinite barrie
Although two coupled quantum wells are a very simplifi
model of the system we are studying here, it is instructive
compare qualitatively our calculation with this model. Th
two systems are different in that the (InAs)46(GaSb)14 super-
lattice is a periodic system, showing a dispersion of the e
tron and hole bands along thekz direction while there is no
kz dependence in the model of Ref. 6. The existence of
dispersion alongkz in our calculation reveals a coupling wit
other bands. In Ref. 6 the only allowed coupling is limited
the two electron and hole ground states of the uncoup
wells.

In Fig. 5 we compare the in-plane dispersions of t
model in Ref. 6 with the superlattice dispersion forkz50.
We see that the values ofki* at the anticrossing points ar
similar in both calculations. We can think of ourkz50 su-
perlattice wave function as a periodic repetition of the c
responding quantum well wave function without any comp
cation of additional phase factors. Now, however, in addit
to the mixing due to the perturbation at the InAs/GaSb int
face, which is present in the model of Ref. 6, we have
additional perturbation at the GaSb/InAs interface. As a

et.

FIG. 4. Comparison between the pseudopotential calculated
persion relations of a (InAs)46(GaSb)14 superlattice and of a
(InAs)30(GaSb)30 along the (kx5ky) direction atkz50.



sult, the anticrossing gap atk




