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|#0), however, the wave functiorg,ss andhg,gshave the same symmetry,
so they anticross. This opens up a.“hy.brildization gap” at sdnmekﬁ* . Using.a pseudop.ot.enti.al plane-wav.e
approach as well as @seudopotential fiteight-bandk - p approach, we predict the hybridization gap and its
properties such as wave-function localization and out-of-plane dispersion. We find that recent model calcula-
tions underestimate this gap severely.

I. INTRODUCTION meny. We also find that whereas Altarelli's model predicts
but one hybridization gap thus suggesting semiconducting
On an absolute energy scale, the valence-band maximuftiather than semimetallidehavior an>n., our multiband
(VBM) of GaSb is higher in energy than the conduction-model shows that for long period superlattices there are mul-
band minimum(CBM) of InAs.! Consequently, a GaSb/InAs tiple anticrossings. This would lead to a quasisemimetallic
heterojunction should be metallic, with the InAs-localized Pehavior, not semiconducting.
electron levelseas below the GaSb-localized hole level

hgasp In (InAs),/(GaSb), superlattice geometry, quantum sy MMETRY-MANDATED BAND COUPLING AND
confinement will puste,,s to higher energies andhgasyto ANTICROSSING IN IIl-V SUPERLATTICES

lower energies, thus opening up a semiconducting band gap ) _ _ _

at sufficiently small perioda<n,. Early experiments® in- Since the semiconducting gap represents anticrossing be-

deed suggested a transition from semiconducter<an, to tween two levels, one must understand and predict the effec-
tive coupling potentiaV{?(k; ,k,) between the relevant an-
ticrossing states.

There are three outstanding problems of anticrossing and
band coupling in semiconductor superlattice physics, that

ticross (rather than crogsthus opening a finite gapHere we(rs t_lr_izt?d_'; tzgupzlii?\t b{/'ftheins(tzlrf:)rd/?Go::;,}] I(SO l)EFA'
k= (ky,ky) indicates the transverse, two-dimensional wave PiNG W x n

vector parallel to the substrate plane, whiledenotes the superlattices which leads to anticrossing df.-like and
wave vector component parallel to the superlattice growth
direction. The Brillouin zone is shown in Fig.]PPerforming
calculations in thek-p envelope function approximation
(EFA), Altarelli* found indeed a semiconducting gap even
for n>n, at some in-plane wave vectokﬁ . Previous ex-
perimental observations of semimetallic beharfovere in-
terpreted by Altarelfi as being due to the abundant defects
that fill in the band-gap region. In 1997, Yaegal® indeed
detected, using capacitance-voltage measurements on
(InAs).6/(GaSb), superlattices, a small band gap
(=4 meV) in the in-plane dispersion. This has prompted
theoretical interest in predicting the semiconducting gap of
nominally semimetallic superlattic8s® In this paper we use

a pseudopotential plane-wave approach to predict the hybrid-
ization gap and its properties such as wave function localiza-
tion and dispersion relations. We also compare our results to
those obtained by approximate models such as eight-band F|G. 1. Brillouin zone for the tetragonal symmetry of the
k-p (finding good agreement, provided that the parameterginAs),/(GaSb), (001) superlattices. The crystal primitive cell
are drawn from pseudopotential calculatiprand to a recent along thez axis is of lengthL,= (n+m)a anda is the zinc-blende
model calculation by de-Leoet al® (finding poor agree- lattice constant.

semimetal an>n,. However, in 1983, Altareffi pointed
out that even fon>n, there could be a semiconducting gap:
since at some in-plane wave vectqr the statesej,,s and
hgasphave the same symmetry representation, they raust
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X;-like levels in superlattices, as one applies pres¥ire, than anticrossnor the kj=0 polarization anisotropy. Note
electric?® or magnetié® fields. This nonzero coupling can that Eq. (33 is a consequence of the fact the (K|

be described via atomistic theories such as tightbiriding =0)=0. Again, it is possible to add by hand additional
pseudopotential, but vanishes in the standard model EFA: terms to EFA to introduce the missing band coupliffys.
However, the value of the coupling constant is undetermined

EFA
Vrx=0. (1) by that theory.
Pseudopotential calculatiofsquantitatively predicted this
coupling potential vs the superlattice perindshowing that IIl. CALCULATION OF THE HYBRIDIZATION GAP
it vanishes fom=odd, and obtaining the effects of pressure . , .
is in good agreement with experiment. We see from the forgoing discussion that the problem of

predicting the hybridization gap in non-common-atom super-
lattices is relatively easy, because already the standard model
grants a nonzero coupling in Eb). This should be con-
trasted with the more difficult problems of predicting the

=0 Ih-hh coupling Eq. (23] or thel’ — X coupling[Eqg. (2)],

(it) The light-hole to heavy-hole coupling\,, in (001)
superlatticeswhich leads ak;=0 to the observed™'? anti-
crossing oflth; with hh, excitons. In theD,q4 point group
symmetry of a(001) superlattice having a&ommon atom
(such as AlAs/GaAs or in the C,, symmetry of non- 5 !
common-aton001) superlattices such as InAs/GaSb, the where, by itself, the standard mpd_el prowdes.al nu[l effect.
andhh, states have the sanfie symmetry representation, so However, the problem of determining the hybridization gap
they must anticross rather than cross. Atomistic theories sudfj N°t entirely trivial, because it is not obvious whether EFA
as tightbindind® and pseudopotenti&l*® for the D, super- gives the r_lghtmag_nltudeof the gap. ThereE&re two reasons
lattices, and pseudopotenfigheory for theC,, superlat- (O raise this questionl) The absence 0¥/ y(kj=0) can
tices, indeed produ€é*16 anticrossing ak;=0 [see Fig. affect theVe (kj# 0) coupling and thus the hybridization

3(b) in Ref. §. On the other hand, the standard EFA, being ad2P atkj#0; (2) the e-hh coupling comes from the interac-
continuum theory, lacks this anticrossinglqt=0, since it tion between the InAs-localized electron state and the GaSb-

assumes Iocali_zgd heavy-hole state. The _magnitude of thesg pouplings
sensitively depends on the detailed boundary conditions used
Vi h(k=0)=0 (2a)  at the interface, which are an unsettled issue in the EFA
’ theory18:21:22
and While EFA-based models of band coupling involve com-

EFA lex discussions of various boundary condition choieeg.,
Vinnn(kj #0) #0. (2b) Fs)ee Refs. 6, 18, 21, and references )t/hera'tmmistic modgels
The effects of th&/;, hn(k;=0) coupling are amplified enor- are free from such ambiguity, directly _provide the magnitude
mously in C,, non-common-atom superlattices such asof the coupling constants, and are simple to apply. Recent
GalnAs/InP(001) or InAs/GaSh001) and reveal themselves pseudopotential calculations on (InA$jGaSb), (001
through a giant in-plane polarization anisotropy in the opticasuperlattice$ indeed demonstratedl) the existence of in-
absorptiort,” which is not present ilD 4 superlattices. While ~plane polarization anisotropy of thehh transitions atk|
atomistic modelgorce Ih-hh mixing atk;=0 upon us by the =0; (2) the occurence oél-hh1 mixing atkj=0 around
very nature of the symmetry properties of the relevant stateg)=28; and(3) the anticrossing of the second and third hole
such mixing can only beaccommodatedn the standard states Ih1 and hh2 &;=0. Because of Eq:3a) these prop-
model of EFA if additional terms are added “by hand” to erties could not be predicted by the standirg approach.
the boundary conditions at the interfater to the EFA Here we use the same pseudopotential model to study the
Hamiltonian'’ The theory itself does not provide the magni- k;#0 dispersion in (InAs)/(GaSb), superlattices strained
tude of V|, nn(kj=0), which thus needs to be supplied ex- to the lattice constant of a GaSbh substrate, thus determining
ternally. the anticrossing gap.

(i) The electrorheavy-hole coupling ¥, in non- In the pseudopptential theory(theory) used heré,the
common-atom superlatticélsat leadga) atk;=0, to asmall ~ single-particle Schidinger equation is given by
anticrossing gap at=n.® as well as to an in-plane polariza-
tion anisotropy in the optical absorptfband(b) at kj#0 to B E
the “hybridization gap” forn>n,.> Again, atomistic theo- 2
ries predict thek=0 anticrossing gap and the=0 polar-

ization anisotropy:'® The standard model of EFA, however, WhereR,, denotes the position of theth atom of typea.
results in The atomic positions are determined by minimizing the ato-

mistic strain energy of the superlatti&his results in the
VEn(k=0)=0 (38  InAs and GaSb segments having tetragarial ratios close
to one, whereas the two interfaces have a dilated InSb bond
and (c/a=1.13) and a compressed GaAs bondgg 0.85). The
EFA screened pseudopotentidts,} are determinedby fitting to
Ven(kj#0)#0. (30) the measuredll-zone(i.e., not justl’) bulk band structures
So while EFA-based methods can explain at least qualitaesf InAs and GaSkincluding anisotropic effective massges
tively the in-planek#0 hybridization gap underlying Eq. and to the local-density approximatioi.DA) calculated
(3b), they cannot account for the anticrossing behavior aband offsets and deformation potentials. Spin-orbit interac-
k=0 for n=n, (electron and hole states cross in EFA rathertions are included as a nonlocal partof. The coefficien3

V2+n2 V(T =Rpa) [ti(D=€i(r), (4
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FIG. 4. Comparison between the pseudopotential calculated dis-

persion relations of a (InAgy(GaSb), superlattice and of a
(InAs)so(GaShy, along the k,=ky) direction atk,=0.

closer to the Brillouin zone center. However, we see that the
interactionV_, in this region given by the pseudopotential
theory is relatively strong, and, as a consequence, the hybrid-
ization gap is 15 meV wide, not much smaller than the nega-
tive gap atk;=0.

We have also examined the interband transition dipole
matrix elements for th€30,30 superlattice and found that,
while the transitions ak;=0 have the same intensity as
those in the(46,14 superlattice, both the intensity and the
polarization anisotropy of the transitions lqjt are smaller
that those we have found in tHd6,149 superlattice. Thus,
we see that, the closé is to k=0, the less intense and
anisotropic are the interband transitions.

FIG. 3. Evolution of the wave function of the last occupied state
(left column and the first unoccupied statgght column of the
(InAs),¢(GaSb), (001) superlattice along the in-planky=(k,
=ky) direction atk,=0. Wave functions are averaged over the
in-plane coordinates.

thicknessesn and m are changed. We have considered a
(InAs) 3o/ (GaSb), superlattice with the same totat m pe-
riod as the previously studied (InAg)(GaSb), superlat- E. Comparison of pseudopotential and model calculations

tice. The pseudopotential calculated in-plane dispersion rela- Figure 5 compares the pseudopotential results with
tions of the two superlattices along thg=k, direction at the model calculation of de-Leonetal® for the

k,=0 are compared in Fig. 4. Since the well widths deter-naq), (Gash), system. The model of Ref. 6 describes the
mine the confinement energies, using 89,30 pe_rlod system as an InAs electron well interacting with a GaSb hole
rather than(46,14 Ieads_ to a more confined electrégince well, both wells being sandwiched between infinite barriers.
t_he InAs electron yveII is now narroweand o a less CON- Although two coupled quantum wells are a very simplified
fined heavy hole(since thg GaSb hole well is now wider model of the system we are studying here, it is instructive to
Thus, the(30,30 superlattice ha_s a small(anega_tlve) gap at compare qualitatively our calculation with this model. The
kj=0 than the(46,14 superlattice. The negative gaplgt 1, systems are different in that the (InAg)GaSh)., super-
=0isnow 17 meV, i.e., about one-fourth of the correspondy,yice is a periodic system, showing a dispersion of the elec-
ing gap of the(46,14 superlattice. Since the electron and ., and hole bands along tke direction while there is no
heavy-hole bands are already closer to each oth&[80 | yepnendence in the model of Ref. 6. The existence of the
than in the(46,14 case, the anticrossing poikff occurs  gispersion along, in our calculation reveals a coupling with
other bands. In Ref. 6 the only allowed coupling is limited to

(H) gaps for a (InAs)¢(GaSb), (001) superlattice. The band offset ,qIs.

between the strained InAs CBM and GaSb VBM is 190 meV. In In Fig. 5 we compare the in-plane dispersions of the

parentheses we give the band gaps obtained with a 150-meV Oﬁs%odel in Ref. 6 with the superlattice dispersion for=0.
We see that the values &f at the anticrossing points are

— — l*
Method Ek=0) (mev) En(lg=k") (mev) similar in both calculations. We can think of oky=0 su-
- - perlattice wave function as a periodic repetition of the cor-
k=0 kz:f k=0 kz:f responding quantum well wave function without any compli-
‘ ‘ cation of additional phase factors. Now, however, in addition
P theory 65 45 25 8 to the mixing due to the perturbation at the InAs/GaSbh inter-
k-p 68(32) 388) 29(22) 8(1.5 face, which is present in the model of Ref. 6, we have an

additional perturbation at the GaSb/InAs interface. As a re-




sult, the anticrossing gap lat






