Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys

Su-Huai Wei^{a)} and Alex Zunger

National Renewable Energy Laboratory, Golden, Colorado 80401

(Received 20 December 1994; accepted for publication 2 June 1995)

Ising first principles hand structure theory we have systematically calculated the (i) allow howing

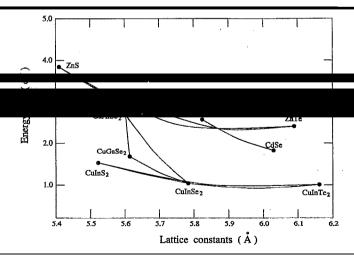
the time mixed-amon ($Cumx_2$, x-s, se, re) and time mixed-cation ($Cumse_2$, m-m, re, re) chalcopyrite systems. The random chalcopyrite alloys are represented by special quasirandom structures (SQS). The calculated bowing coefficients are in good agreement with the most recent

I. INTRODUCTION

 $A_{1-x}B_x$ semiconductor alloys constitute a group of technologically important materials since their structural, transport, and optical properties can be tuned continuously by terms properties a variable. For example, the band gaps $E_g(x)$ of $A_{1-x}B_x$ alloys can often be described by

where b is an "optical bowing coefficient." Figure 1 illustrates that alloys between different I-III-VI₂ chalconvrites¹⁻⁴ oner a new, redshitted range of band gaps relative to the alloys of common II-VI compounds.^{5,6} It has been shown

with CuInS₂ can increase the band gap of CuInSe₂, a change that increases the efficiency of thin-film CuInSe₂ solar cells. In Table I we summarize the measured 10-33 bowing parameters of the Cu-based chalcopyrite alloys, while Table II give analogous results 3. To the Zn chalcogenide alloys, Table I


definitely about the properties of their alloys. In fact, measurements of optical bowing parameters are lacking for many Cu-III-VI₂ alloys with III=AI, Ga, In and VI=S, Se, Te and, in those cases where data are available, the scatter between different measurements on the same alloy is significant. In some cases, even the sign of the bowing parameter is under dispute, e.g., CuIn(S,Se)₂ and Cu(Ga,In)Se₂. Other properties, such as the band offsets between the chalcopyrite compounds (needed for device design), are the generally and known. From the point of view of fundamental physics, it is

gaps of individual chalcopyrite compounds are significantly lower than those of the corresponding II-VI compounds [e.g., $E_g(\text{CuGa}X_2) < E_g(\text{Zn}X)$ for X = S, Se, Te; see Fig. 1]⁴ but also why the chalcopyrite bowing parameters (Tables I and II) and valence-band offsets (see below) are systematically

counterparts [e.g., $b(\text{CuM S}_{1-x}\text{Se}_x) < b(\text{ZnS}_{1-x}\text{Se}_x)$ and $b(\text{CuM Se}_{1-x}\text{Te}_x) < b(\text{ZnSe}_{1-x}\text{Te}_x)$].

In this paper we have calculated the (i) alloy bowing

mixed-cation CuAlSe₂/CuGaSe₂/CuInSe₂ and mixed-anion

⁽¹⁾ to describe band gaps as a function of composition x, while for the lattice constant we use Eq. (5). Experimental values (solid dots) are used for the end-point compounds (see Table IV below).

a)Flectronic mail: shw@nrel.gov

٠.	•	•	

Cam(0,00/2	V.12	Dingic	I OWGCI IIIIA	Chapman <i>et at.</i> (1979)	Kei, 14
	∧ ∩ <u>O</u>	Cingle	Inding abanging transport	D-1 (1001)	20.00
	<u> </u>				
	0.14	Single	Melt and anneal	Abid et al. (1987)	Ref. 17
	-0.02			Samanta et al. (1993)	Ref. 13
("- A1/C- T-)	0.02			Samana et ut. (1993)	Nc1. 13
CuAl(Se.Te)					
CuGa(Se,Te) ₂	0.22	Single	Melt and anneal	Avon et al. (1983)	Ref. 18
	0.34	Poly	Melt and anneal	Chatraphorn et al. (1985)	Ref. 19
	0.00	2 02)	with the timetr	T	
				Samanta <i>et al</i> . (1993)	Ref. 13
CuIn(Se,Te) ₂	0.39	Single	Melt and anneal	Avon et al. (1983)	Ref. 18
	0.35	Polv	Melt and anneal	Chatraphorn et al. (1985)	Ref. 19
		,		* '	
	0.42	Poly	Melt and anneal	Quintero et al. (1991)	Ref. 20
	0.30			Samanta et al. (1993)	Ref. 13
C+-C(C-T-)	-030 •				
CuGa(S,Te) ₂	-0.30 ·			Samanta <i>et al.</i> (1993)	Ref. 13
			As,		

Mixed	

~ <u> </u>	<u> </u>				
Cu(MI, Ua)OC)	V.40				
~		Single	iouine chemicai transport	Snirakata et al. (1993)	Ket. 23
Cu(Al,Ga)Te ₂					
$Cu(Ga,In)S_2$	0.19	Single	Iodine chemical transport	Bodnar <i>et al.</i> (1986)	Ref. 24
	0.31	Single	Iodine chemical transport	Shirakata et al. (1993)	Ref. 12
	0.15			Samanta et al. (1993)	Ref. 13
	0.20			Samanta et al. (1993)	Ref. 13
Cu(Ga,In)Se ₂	0.15	Single	Iodine chemical transport	Bodnar et al. (1982)	Ref. 25
	-0.07	Single	Melt and anneal	Avon et al. (1983)	Ref. 18
	0.03	Single	Melt and anneal	Abid et al. (1987)	Ref. 17
	0.16	Single	Bridgman	Ciszek et al. (1987)	Ref. 26
	0.16	Single	Bridgman	Durran (1987)	Ref. 27
	0.11	Poly	Evaporation	Dimmler et al. (1987)	Ref. 28
	0.14	Poly	Evaporation	Chen et al. (1987)	Ref. 29
	0.24	Poly	Evaporation	Albin et al. (1991)	Ref. 30
	0.15	Single	Chemical vapor deposition	Tinoco et al. (1991)	Ref. 31
	0.13	Poly	RF sputtering	Yamaguchi et al. (1992)	Ref. 32
	0.02	Single	Iodine chemical transport	Larez et al. (1994)	Ref. 33
	0.15			Samanta et al. (1993)	Ref. 13
	0.17			Samanta et al. (1993)	Ref. 13
	0.21			Samanta et al. (1993)	Ref. 13
Cu(Ga,In)Te ₂	-0.22	Single	Melt and anneal	Avon et al. (1983)	Ref. 18
	-0.33			Samanta et al. (1993)	Ref. 13
Cu(Al,In)S ₂	,		•		
Cu(Al,In)Se ₂					
Cu(Al,In)Te ₂					

ciples, self-consistent electronic structure theory based on the invalidation (LDA). Our principal results for the bowing parameters (b), the mixing enthalpy at x=1/2 (ΔH) and the valence-band offset (ΔE_v) are summarized in Fig. 2 for reject and alternative (ΔE_v).

II. METHOD OF CALCULATION

A. Special quasirandom structures

A random alloy is distinguished from an ordered com-

mixed-anion Zn chalcogenide alloys are given in Fig. 3. This

for random alloys the site occupations are known only proba-

discusses the significant physics of the results (Sec. III).

structural model for random substitutional $A_x B_{1-x}$ alloys is

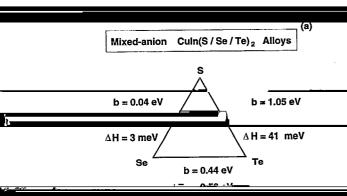
TABLE II. Measured bowing parameters b (in eV) of the lowest gaps in Zn-based chalcogenide alloys. "Single" and "poly" refer to single crystal and polycrystalline, respectively.

System	b	Sample type	Growth method	Author (year)	Reference
Zn(S,Se)	0.41	Single	Melt and anneal	Suslina <i>et al.</i> (1977)	34
	0.63	Single	Chemical vapor deposition	Ebina et al. (1974)	35
	0.43	Single	Iodine chemical transport	Mach et al. (1982)	36
	0.55	Poly	Evaporation	Shazly et al. (1985)	37
Zn(Se,Te)	1.23	Single	Chemical vapor deposition	Ebina et al. (1972)	38
• / /	1.51	Ü	molecular beam epitaxy	Brasil et al. (1991)	39
Zn(S,Te)	3.0	Poly	Evaporation	Hill et al. (1973)	40
, , ,	3.2	•	molecular beam epitaxy	Wong et al. (1994)	41

to consider a huge unit cell whose sites are occupied by A

(for mamematical convenience) periodic boundary conditions then gives a "nseudo-ordered crystal" that can be

sufficiently large "supercells" this approach becomes exact. In practice, this approach has been applied within the context of semiempirical electronic structure methods for ~2000 atom/cell, producing rather accurate results. 43-45 Despite the success of this direct method, this procedure requires a large


computationally practical in conjunction with the highly accomplex but methodically complex first principles I DA vanu-structure methods. There is, nowever, a more efficient way to achieve practically the same result: we know that the

atomic structure, and that the structure can be quantified by the "structural correlation functions" $\Pi_{k,m}$ for atomic clusters (k,m) with k vertices and up to mth neighbor. Hence, rather than occupy sites of a huge unit cell $at\ random$, one can occupy sites of a "small" unit cell (the "special quasir-

physically most relevant structural correlation functions $\Pi_{k,m}$ are forced to be closest to the exact values in an infinite

percells (~20 atoms) with correlation functions that approach the exact values in very large random supercells.

The SQS method has been previously applied to III-V^{45,47,48} and II-VI^{47,49} zinc-blende alloys as well as to fcc transition metal alloys. The coordinates of these SQS can be found in the coordinates of these SQS can obtained from the FTP site ftp://ftp.nrel.gov/pub/sst/archive/sqs). Here we apply the SQS method to alloys between chalcopyrites.

 $\Delta H = 13 \text{ meV}$

 $CuIn(S_{0.5}Se_{0.5})_2$, the anions occupy an fcc sublattice, hence, for the anion sublattice we can use the fcc SQS. The cation

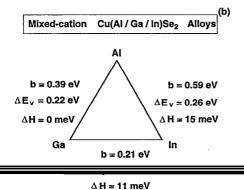
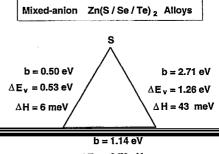



FIG. 2. Calculated bowing coefficients b, valence-band offsets ΔE_v , and alloy mixing energies ΔH at x=1/2 of (a) mixed-anion chalcopyrite alloys and (b) mixed-cation chalcopyrite alloys. ΔH is given in meV per atom. The value given in the figure should be multiplied by two to convert it to meV

<u>'∰</u> ₽<u> "'() - '</u>

FIG. 3. Calculated bowing coefficients b, valence-band offsets ΔE_v , and alloy mixing energies ΔH at x=1/2 of mixed-anion chalcogenide alloys.

snould be multiplied by four.

manaphor by two to convert it to me a per minen-mount

TABLE III. Structural correlation functions $\overline{\Pi}_{k,m}$ of the random alloys at x=1/2, where k is the number of vertices of the cluster (k=2) is pair. k=3 is

bors, respectively). For the mixed-cation SOS we use the notation of fcc

TABLE IV. Structural parameters and band gaps used in the present calculation for five pure chalconvrite compounds and three Zn-based II-VI com-

rite compounds except for CuAlSe, where we used our estimated internal

SOS (mix	ed cation)	0	0		-	-2/3	Ω	1/3	0
Exact ran	20111	Ų	V	•	V	V	V	V	V

sublattice needs to have the chalcopyrite translational symmetry, so that the final SQS unit cell should be commensurate with both the chalcopyrite structure of the cation sublattice and with the SQS of the anion sublattice. This is achieved here using a sixteen atom SQS unit cell. It has the Cartesian lattice vectors:

$$\mathbf{a_3} = (2,2,0) \frac{a}{2},$$
 (2)

onal ratio. In this unit cell the anions form an fcc SQS4 (an A_2B_2 superlattice along the [110] direction).⁴⁹

For Cu-based mixed-cation chalcopyrite alloys (e.g.

tered tetragonal lattice. The Cu sublattice has the chalcopyrite translational symmetry, while the anions occupy an fcc sublattice. In the present calculation, we used a 16-atom SQS cell (with four mixed atoms) which has the same lattice vectors as in Eq. (2). For unrelaxed CuGaosInosSea alloy the

$$C_{1}^{(1)}(0,0,0) \stackrel{a}{=} C_{2}^{(2)}(0,1,1) \stackrel{a}{=} a$$

$$\operatorname{Cu}^{(3)}(1,1,2) \frac{a}{2}; \quad \operatorname{Cu}^{(4)}(2,1,1) \frac{a}{2},$$

$$\operatorname{Ga}^{(1)}(0,0,2) \stackrel{a}{=} : \quad \operatorname{Ga}^{(2)}(1,0,1) \stackrel{a}{=}$$
(3)

$$In^{(1)}(1,1,0) = In^{(2)}(1,2,1) = .$$

It is interesting to see that the mixed cations also form an A_2B_2 superlattice along the [110] direction. The structural correlation functions of these SQS are given in Table III; they are compared with the ideal random alloy correlation functions. We see that for both mixed-cation and mixed-anion alloys the first error of pair correlation functions oc-

System
$$a(A)$$
 $\eta=c/a$ u E_g (eV) Δ_{SO} (eV) Δ_{CF} (eV)

Cuinse 3.784 1.004 0.224 1.04 0.184 -0.02

CuinTe₂ 6.161 1.003 0.225 1.01 0.598 -0.00

ZnS 5.409 1.000 0.250 3.84 0.068 0.000

ZnSe 5.668 1.000 0.250 2.82 0.396 0.000

ZnTe 6.089 1.000 0.250 2.40 0.883 0.000

$$[1 n^2]^{1/2}$$

$$R_{BX} = a \left[\frac{1}{16} + \left(\frac{1}{2} - u \right)^2 + \frac{\eta^2}{16} \right]^{1/2}, \tag{4}$$

In the undistorted lattice u=1/4 and $\eta=1$, so $R_{AX}=R_{BX}=(\sqrt{3}/4)a$. In a pure chalcopyrite crystal the structure is determined once $\{a, n, u\}$ are specified. In a chal-

external structural parameters that need to be determined. It is crucial to find the equilibrium values of these parameters since band gaps depend on atomic relaxation.⁴ Our first-principles total energy and force calculations show that for these rather ionic alloys the anion-cation bond lengths have

lengths" indicates that the hand bending force 52,53 in chal-

relaxed atomic positions in our chalcopyrite SQS and superlattices of $(ABX_2)_n/(A'B'X_2')_n$ (Sec. II D) by requiring that (i) the nearest-neighbor anion-cation bond lengths in the alloy equal their respective values in the pure chalcopyrite

$$a(x) = (1 - x)a_{ABX_2} + xa_{A'B'X_2'}.$$
 (5)

These requirements uniquely determine all cell-internal and cell-external parameters of the model alloy.

The input^{2,4} $\{a,u,\eta\}$ to our calculation is given in the first three columns of Table IV. Using these values for each chalcopyrite and Eq. (4) we determine the bond lengths in the *alloy*. In all cases but CuAlSe₂ we use measured

the Al-N hand length is about 3% shorter than the Ga-N copyrite, we find that the Al-Se bond length is about 2%

0.6%) than the Ga-V bond length, while in the ionic nitrides

smaller than the Ga-Se bond. The difference between the In bond length and the Ga bond length are found to b

Using the unit cell structure of the SQS (Sec. II A) and the relaxed atomic positions (Sec. II B) we can now apply band-structure techniques to evaluate the alloy band gaps E_a

performed using the density functional formatism as implemented by the general potential, relativistic, all electron, linearized augmented plane wave (LAPW) method. 56 Note that the earlier calculations of Jaffe and Zunger^{3,4} were nonrelativistic.] We used the Ceperley-Alder exchange correlation

using special k points which are equivalent to the ten spe-

the tetragonal distortion $1-\eta$ increases. This explains the

our carculated act in good agreement with experimental data 10,22,32

culated fully relativistic hand energies to the quasicubic orbit splittings of the chalcopyrites are much smaller than the corresponding values in the II-VI Zn compounds. For

valid gaps relative to men corresponding 11-v1 compounds (Table IV and Fig. 1).

D Calculation of hand offsets

vaience-band $\Lambda E (ARX_0/A'R'X')$ at the interface between two chalin photoemission core-level spectroscopy, where the band

Here,

and

$$A \cdot E^{A'B'X'_2} = E^{A'B'X'_2} \cdot E^{A'B'X'_2}$$

ate the cole level to valence-dahu maximum energy sedala-

$$\Delta E_{C,C'} = E_C^{ABX_2} - E_{C'}^{A'B'X_2} \tag{9}$$

is the difference in core-level binding energy between ABX_2

an eigenvalue difference for each of the component chalcopyrites. We wish to obtain the band offset for a fully relaxed interface, where each component has its own equilibrium lattice parameter. Thus, the first two terms in Eq. (6) are

core-level difference $\Delta E_{C,C'}$ between the two charcopyrites

are bulk like. We find that for n=7 the uncertainty due to the

respond to relaxed constituents; the small core level shift due to strain 66 is neglected. If one is interested in the sace when

band edge energy of each chalcopyrite needs to be shifted size and direction of the strain through the deformation

terms of Eq. (6), while the shift in the third term is expected to be small.66

can be obtained from the calculated alloy total energies as

$$\Delta \Pi(x-1/2) = E_{tot}(ADA_2/A D A_2) = E_{tot}(ADA_2)$$

Our calculated results are denoted as ΔH in Fig. 2. We find that for both mixed-anion and mixed-cation alloys the mixing enthalpy is positive and increases as the lattice mismatch

 $\Delta H(S,Te)$ are 3, 13, and 41 meV/atom, respectively, while

spectively. The positive sign of ΔH indicates that here, the ground state at T=0 corresponds to phase separation into the pure chalcopyrite constituents. (However, at finite temperatures, the disordered phase can be stabilized through en-

offset is given by

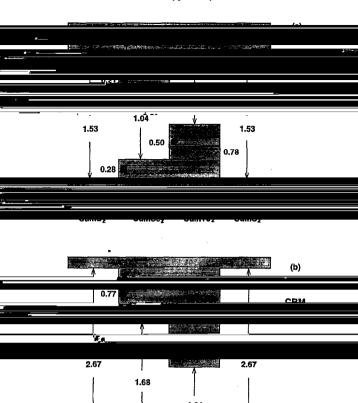


FIG. 5. Calculated intrinsic valence-band and conduction-band offsets for interfaces between Zn-based II-VIs. The values pertain to fully relaxed components having their free-space equilibrium structures.

VBM

B. Band offsets

عون مطغله وغواده

4(a)and between the three common-anion CuAlSe₂/CuGaSe₂/CuInSe₂ chalcopyrites [Fig. 4(b)]. For comparison, we have also calculated the intrinsic valencehand offsets between the ILVI 7nS/7nSe/7nTe chalco geniues (Fig. 3). The conduction valid offsets ΔE_c are of

components having their free-space equilibrium structures.

0.04

and (Al,Ga) chalcopyrite alloys, and is slightly larger for

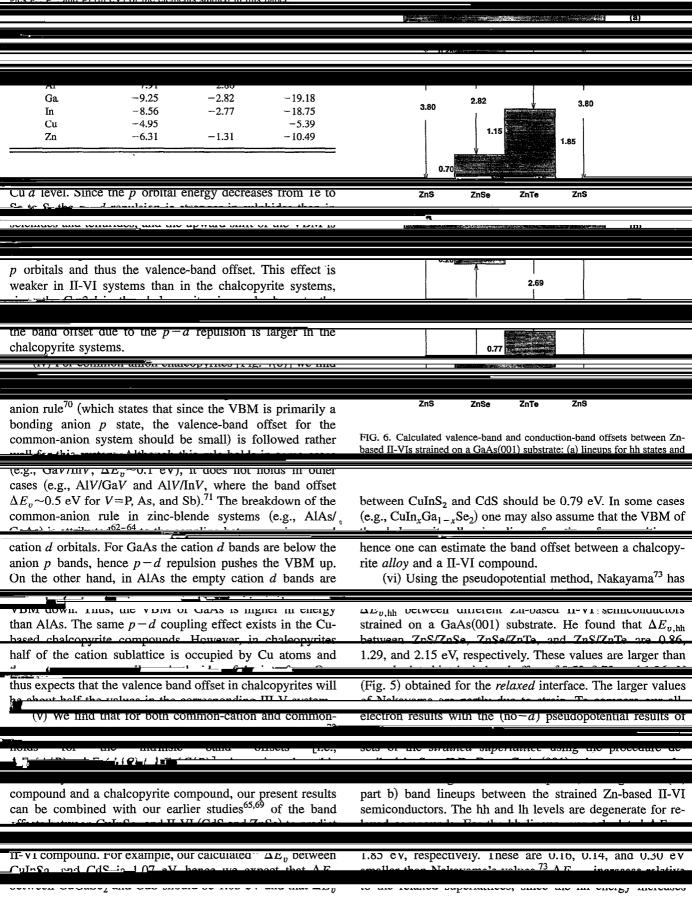
hatwaan the compounds Wa find the following results

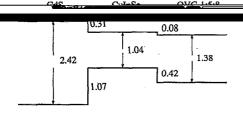
band lineup is "type II." This is true both in II-VIs and in chalcopyrites. For the S/Te interface, the lineup is type II in chalcopyrites and type I in II-VIs. However, strain may charge the time of the linear (see below). For the mixed

(ii) For common-cation chalcopyrites [Fig. 4(a)] the

range at finite temperatures. The mixing enthalpy ΔH is large for the (S,Te) alloy, suggesting that large miscibility gap can exist in this system. 16

We have also calculated the mixing enthalpy for mixed-


(S,Te). For these Zn alloys the equilibrium structural parameters are determined using the valence force field (VFF) model.52,53 We find that the mixed-anion chalcopyrite alloys


sponding Zn alloys (Fig. 3). This is consistent with the observation that the chemical disparity between the alloyed elements is reduced in chalcopyrites relative to the II-VI alloys (see Secs. III B and III E below) and that chalcopyrites have smaller bond bending force constants, thus, smaller elastic the valence-band offsets for these systems mainly reflect the differences between anion p orbital energies. The atomic porbital energies increase from S to Se to Te (Table V). The large conduction-band offset is partly due to the anion s or-

that the CBM energy moves up as the volume of the compound decreases.

(iii) The valence band offsets between common-cation

responding 11-VIs (Fig. 5). The reason is the larger p-arepulsion in chalcopyrites: the p-d repulsion is inversely proportional to the energy difference between the cation d and anion p state. ^{63,64,69} In the chalcopyrite and II-VI compounds the cation d bands are below the anion p bands.³

also given for comparison.

Alloy	Calculated	Experiment	Tinoco et al.ª	
Cu(Al,Ga)Se ₂	0.39	0.28	0.06	
Cu(Ga,In)Se ₂	0.21	0.15 - 0.24	0.18	
Cu(Al,In)Se ₂	0.59		0.24	
CuIn(S,Se) ₂	0.04	~0.0	0.10	
O T (O M)				

aRef. 80.

almost linearly with the epitaxial strain along the (001) direction. ⁶⁷ It is interesting to see that for the ZnS/ZnTe interface, the system changes from type I for a relaxed interface (Fig. 5) to type II for a strained interface [Fig. 6(a)]. This is because under strain the CBM energy of ZnTe interests, while that of ZnS decreases. Our calculated ΔE_c are given in Fig. 6. The band gap of the compounds also changes with strain, e.g., we find that for the strained ZnTe compound, the band gap is reduced by 0.09 eV. (Note, however,

rather than epitaxially strained values to derive the conduction-band offsets. This can cause errors in his calculation of ΔE_c .)

(vii) There are a few indirectly measured values of $\Delta E_v(\mathrm{ZnSe/ZnTe})$: (a) Based on fitting the dominant photoluminescence peaks to the $\mathrm{ZnSe_xTe_{1-x}}/\mathrm{ZnTe}$ superlattice band structure obtained by $\mathbf{k} \cdot \mathbf{p}$ theory, Rajakarunanayake et al. ⁷⁴ deduced a value for the unstrained valence-band offset $\Delta E_v(\mathrm{ZnSe/ZnTe}) = 0.91 \pm 0.12$ eV. This fitting assumed that the observed peak energy corresponds to band edges transition. If the photology resease originates instead from (below-the-band-edge) exciton-like transition, the fitted

calculated band gap of $CuIn_5Se_8$ is 0.34 eV larger than for $CuInSe_2$, so the CBM of $CuIn_5Se_8$ is 0.08 eV lower than for

OVCs can be formally written as an alloy in the form $(\text{CuIn}_5\text{Se}_8)_{1-x}(\text{Cu}_4\text{In}_4\text{Se}_8)_x$. Hence, the band alignment between any of these OVCs and CuInSe₂ can be linearly interpolated from the values given in Fig. 7. For instance, for the

are 0.34 and 0.06 eV lower than CuInSe₂, respectively.

C. Bowing in chalcopyrite alloys

The optical bowing parameter b of the chalcopyrite alloy is given by

$$b = -4 \left[E_g(ABX_2/A'B'X_2') - \frac{1}{2} E_g(ABX_2) - \frac{1}{2} E_g(ABX_2) \right]$$
(12)

Note that both computational and LDA errors? tend to cancel in Eqs. (10) and (12), since we compare chemically identical systems in two different forms: the $ABX_2/A'B'X_2'$ alloys vs. equivalent amounts of the constituents ABX_2 and $A'B'X_2'$. Figure 2 gives the calculated bowing parameter for stoichiometric mixed-anion [Fig. 2(a)] and mixed-cation [Fig. 2(b)] chalcopyrite alloys. Comparing our calculated re-

smaller. (b) Recently, capacitance-voltage measurement by Ukita et al. 5 of a Schottky-like heterojunction barrier gave $\Delta E_v(\text{ZnSe/ZnTe}) = 0.7-0.8$ eV. Both experimental results 4,75 agree very well with our calculated value of 0.73 eV (Fig. 5). However, recent pseudopotential calculation of Freytag 6 treating the Zn 3d states as frozen core found a much larger value of the band offset $\Delta E_v(\text{ZnSe/ZnTe}) = 1.09$ eV. This dis-

neglect or explicit p-a coupling in the latter. Recall that p-d repulsion raises the energy of VBM in inverse proportion to the p-d energy difference. The effect is thus larger

(viii) Recently, Schmid et al.⁷⁷ found that between the CdS and CuInSe₂ layers in CdS/CuInSe₂ solar cells there exists a CuInSe₂-derived Cu-poor "ordered vacancy compound" (OVC). We have studied the band alignment be-

narison We find from our calculation that the unstrained

This is due to stronger p-d coupling in the former. The

we next comment on the *experimental* results, so as to decide with what data to compare our calculations. The experimental results of Avon et al., 18 yielding regative bowing

CuIn(S,Se)₂ and Cu(Ga,In)Se₂ are also in disagreement with other measurements. Samanta *et al.*¹³ have recently presented bowing parameters for eight chalcopyrite alloys (Table I). We see that some of their results, yielding zero and

small 19 (b<0.05 eV). This is not supported by other experi-

tering of the experimental data (Table I) could reflect

nonstoichiometry³⁰ in the samples. Table VI collects the measured bowing parameters that we assess as being the most reasonable at this time.

To fit the experimental data for optical bowing of chalcopyrite alloys in which A and B are the mixed atoms. Ti-

$$b(A,B) = 5/4|\chi_A - \chi_B|, \tag{13}$$

where χ_{α} is Phillip's electronegativity⁸¹ for atom α . Their results are also listed in Table VI for comparison. Although loys used in their fitting [(Ga,In), (S,Se), and (Se,Ie)], this formula underestimates the bowing of the *other* alloy systems. (Al Ga) (Al In) and (S Ta). For example, their presents

(0.6 eV). This suggests that the formula of Tinoco *et al.* cannot be reliably extended to systems not used in their fitting. Furthermore, the phenomenological scaling of Eq. (13) does

nor does it explain the different bowing of chalcopyrites [e.g., CuGa(S,Se)₂] versus zinc-blende [Zn(S,Se)] alloys. This will be discussed in Sec. III E below.

D. Bowing in Zn-based II-VI alloys

cient for Zn-based II-VI alloys. Figure 3 gives our calculated

good. We notice that bowing parameters measured from molecular beam epitaxy (MBE) grown films^{39,41} have large values suggesting that those samples may not be perfectly random (see below).

The results b=2.71 eV for Zn(S,Te) can be compared

$$\mathbb{Z}_{g}(\mathbb{Z}_{1})$$
 \mathbb{Z}_{1} \mathbb{Z}_{1} $\mathbb{Z}_{g}(\mathbb{Z}_{1})$ $\mathbb{Z}_{g}(\mathbb{Z}_{1})$

 ZnS_nTe_{4-n} at x=1/2. For Zn(S,Se) and Zn(Se,Te) Bernard and $Zunger^{61}$ used in Eq. (14) only the n=2 data, finding b=0.39 eV and b=1.96 eV, to be compared with the more accurate current values of b=0.50 eV and b=1.14 eV, respectively.

Comparing now the bowing in mixed-anion chalcopyrites [Fig. 2(a)] with that in mixed union \mathbb{Z}_n chalcogonides (Fig. 3) we see the same trend $b(S,Se) \leq b(Se,Te) \leq b(S,Te)$,

relative to the II-VI zinc-blende alloys. This trend is analyzed in the next section.

E Anglynia of having agefficiants

Optical bowing in semiconductor alloys is caused by the difference of volume deformation potentials of the constitu-

For direct band-gap semiconductors, the top of the valence band is mostly an anion n like state (with some ention n and d characters), while the bottom of the conduction band is mostly a cation s and anion s state. The ΔV -induced intraband coupling within the conduction band and within the

ents. On the other hand, ΔV -induced *interband* coupling between the conduction and the valence bands lowers the VBM and raises the CBM, thus *increasing* the band gap. For most

of the same orbital character is much stronger than the interband coupling, so alloying reduces the band gap and the

the A and B atoms. When two compounds have large difference in their atomic potential or large difference in their size, the optical bowing is expected to be large. The atomic po-

the differences of their atomic valence eigenvalues. In Table V we show our calculated LDA atomic valence eigenvalues ϵ_s , ϵ_p , and ϵ_d of elements studied in this paper. The size mismatch of the constituents can be inferred from the mismatch of their lattice constants.

mixed-anion alloys studied here [Fig. 2(a)], CuIn(S,Se) has a rather small howing, while the bourings for CuIn(S,Te) and CuIn(S,Te) are large. This is because (i) the s chemical potential difference between S and Se is small (\sim 0.2 eV), while the Te s potential is about 2 eV higher than the one for S and Se (Table V), (ii) the p chemical potential difference is smaller between S and Se (\sim 0.45 eV) than between S and Te (\sim 1.0 eV) and (iii) the size mismatch between S and Se is

1 (a a-) >1 (a, T.) >1 (a T-)

alloys also causes wave-function localization. We find that in CuIn(S,Te) the top of the valence band is strongly localized on the Te atom with higher p orbital energy, while the bottom of the conduction band is strongly localized on the S atom with low s orbital energy. No strong wave-function localization is observed in CuIn(S,Se), which has almost no bowing. The significant *reduction* in bowing in the chalcopyrites relative to the zinc-blende alloys can be understood by

more than the Zn chalcogenides (Sec. III B), thus reduces the bowing.

In mixed-cation alloys [Fig. 2(b)] most of the level re-

their relatively large band offset, the Cu(Al,Ga)Se₂ and Cu(Al,In)Se₂ alloys also exhibit significant perturbation in

anoy potential and the average potential of the constituents.

=0.39 and 0.39 ev, respectively) than Cu(Ga,In)Se₂ (b

1 11030	211(0,00)	ZAI(50, 10 <i>)</i>	Zar(o, re)
			F-7
O(CII)	0.10	U.Z.J	0.01
b(CuPt)	1.09	3.15	5.93
b(random)	0.50	1.14	2.71
b _{exptl} (random)	~0.50	1.23-1.50	3.0-3.2

=0.21 eV). We also notice that the bowing coefficient of $Cu(Ga,In)Se_2$ is smaller than (Ga,In)V (with V=P, As, and Sb) alloys $(b\sim0.5 \text{ eV})$. This is because in the chalcopyrite system half of the cation sites are occupied by Cu, so the copyrite alloys is reduced relative to zinc-blende alloys. For the $Cu(Al,Ga)Se_2$ and $Cu(Al,In)Se_2$ alloys the chemical disparity and size disparity between Al and Ga, and between Al

for these two alloys.

Our foregoing discussion centered on the SQS models

dered alloys. Our results for Zn chalcogenides in the ordered ChAn (and AB considered lang [001]. First and CuPt (an AB superlattice along [111] direction) structures are summarized in Table VII. We see that band copp (or howing) depend against the commend atomic

dered phases, at the bowing of the ordered phases has the following trend

$$b_{\text{CuPt}} > b_{\text{CuAu}} > b_{\text{CH}},$$
 (15)

$$b_{\text{CuPt}} > b_{\text{Random}} > b_{\text{CH}}.$$
 (16)

will be drastically reduced relative to the disordered alloy. ⁸³ In Zn(S,Se), Zn(Se,Te), and Zn(S,Te) alloys, CuPt ordering at x=1/2 can reduce the band gap by up to 0.15, 0.50, and 0.81 eV, respectively, relative to the random alloy. For alloys ordering into the chalcopyrite structure, the band gap is in-

The same trends of Eqs. (15) and (16) are found in chalbowing parameter b-1.25 eV when the Se and Te atoms were arranged in the ordered CuAu structure, while b=0.17eV when the Se and Te were arranged in the ordered chalcopyrite structure. These results differ significantly from the studied systematically the (i) allow mixing anthologies A II

(iii) alloy bowing coefficients b for three mixed-anion

alloys are represented by an SQS model. We find that (i) for all the chalcopyrite alloys studied here the mixing enthalpy is positive, indicating that for these alloys the ground state at T_{-} rite constituents. However, at higher temperature, the disordered phase can be stabilized through entropy. The mixing enthalpy ΔH is rather small for (S,Se), (Al,Ga), (Se,Te), and (Ga,In) alloys, suggesting that these alloys will be miscible in the whole composition range and can thus be formed easily. The mixing anthalpy ΔH is large for the (S,Ta) allow suggesting that a large miscionity gap can exist in this system. (ii) For mixed-cation interfaces, most of the band offsets occur in the conduction band, while for mixed-anion

and are in good agreement with the most reliable experimental data for stoichiometric alloys. CuIn(S,Te) and CuIn-

(iv) the difference of bowing coefficients and band offsets

larger p-d coupling in chalcopyrite systems. Bowing paand chalcopyrite structure) are predicted. The band alignment between CuInSe₂ and CuInSe₂-derived ordered va-

ACKNOWLEDGMENTS

We thouk Professor I. C. Fermine for maifying the SQC structure for the mixed-cation chalcopyrite alloy. This work

No. DE-AC02-83-CH10093.

(1987).

³ J. E. Jaffe and A. Zunger, Phys. Rev. B 28, 5822 (1983).

⁴J. E. Jaffe and A. Zunger, Phys. Rev. B 29, 1882 (1984), and references therein.

⁵J. K. Furdyna, J. Appl. Phys. 64, R29 (1988), and references therein.

⁶Landolt-Bornstein: Numerical Data and Functional Relationships in Sci-

J. Hedstrom, H. J. Olsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos,

⁸ A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, Appl. Phys. Lett. **65**, 198 (1994).

⁹ For a review of device properties, see A. Rothwarf, Solar Cells **16**, 567 (1986).

51, 551 (1990).

ture.

Technol. 28, 1175 (1993).

¹⁵I. V. Bodnar, B. V. Korzun, and A. I. Lukomskii, Phys. Status Solidi B 105, K143 (1981).

¹⁶M. Quintero and J. C. Woolley, J. Appl. Phys. 55, 2825 (1984).

¹⁸J. Avon, K. Yoodee, and J. C. Woolley, Nuovo Cimento D 2, 1858 (1983). ¹⁹S. Chatraphorn, T. Panmatarite, S. Pramatus, A. Prichavudhi, R. Kritayakirana, J.-O. Berananda, V. Sa-yakanit, and J. C. Woolley, J. Appl. Phys.

57, 1791 (1985). ²⁰ M. Quintero, R. Tovar, E. Guerrero, F. Sanchez, and J. C. Woolley, Phys.

Status Solidi A 125, 161 (1991). ²¹P. Grima, M. Quintero, C. Rincon, and J. C. Woolley, Solid State Commun. 67, 81 (1988).

²²N. Tsuboi, S. Kobayashi, F. Kaneko, and T. Maruyama, Jpn. J. Appl. Phys. 27, 972 (1988).

[pg_ I Annl Phus 37 I 1304 (1003)

k31 (1982).

²⁶ T. F. Ciszek. R. Bacewicz, J. Durrant, S. K. Deb, and D. Dunlavy, Pro-

(IVIKS, PIUSDUIGH, 1987), p. 133.

Mickelsen, Proceedings of the 19th IEEE PV Specialists Conference (IEEE, New York, 1987), p. 1445.

32 T. Yamaguchi, J. Matsufusa, and A. Yoshida, Jpn. J. Appl. Phys. 31, L703 (1992).

³³C. Larez, C. Bellabarba, and C. Rincon, Appl. Phys. Lett. **65**, 1650 (1994). ³⁴L. G. Suslina, D. L. Fedorov, S. G. Konnikov, F. F. Kodzhespirow, A. A. Andreev, and E. G. Shariai, Fiz. Tekh. Poluprovodn. 11, 1934 (1977) [Sov. Phys. Semicond. 11, 1132 (1977)].

סט, אוס (נצועד), ט. בעובווווב, ועו. de Iviticia, and G. Bougnot, Tinn Sond Film 70, 285 (1980),

Status Solidi R 110 607 / (QX7): L F. Nicholls L L Davi

T. El Shair, and A. M. Ebrahim, Appl. Phys. A 36, 51 (1985).

³⁸ A. Ehina, M. Yamamoto, and T. Takahashi, Phys. Rev. B 6, 3786 (1972)

R. J. Martin, Appl. Phys. Lett. 58, 2509 (1991).

⁴⁰R. Hill and D. Richardson, J. Phys. C 6, L115 (1973).

J. Sham, ibid. 140, A1133 (1965).

⁴⁵ K. A. Mader and A. Zunger, Appl. Phys. Lett. **64**, 2882 (1994); Phys. Rev. B (to be published).

⁴⁶J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica 182A, 334 (1984).

Phys. Rev. B 42, 9622 (1990).

⁴⁸R. Magri, S. Froyen, and A. Zunger, Phys. Rev. B 44, 7947 (1991).

⁴⁹S.-H. Wei and A. Zunger, Phys. Rev. B 43, 1662 (1991); 14272 (1991).

⁵⁰Z. W. Lu, S.-H. Wei, and A. Zunger, Phys. Rev. B 44, 10470 (1991).

⁵¹Z. W. Lu, S.-H. Wei, and A. Zunger, Phys. Rev. B 45, 10314 (1992). ⁵²P. N. Keating, Phys. Rev. **145**, 637 (1966).

⁵³ J. L. Martins and A. Zunger, Phys. Rev. B **30**, 6217 (1987).

⁵⁴L. Vegard, Z. Phys. **5**, 17 (1921).

55 H. W. Spiess, V. Haeberln, G. Brandt, A. Rauber, and J. Schneider, Phys. Status Solidi B 62, 183 (1974).

⁵⁶S.-H. Wei and H. Krakauer, Phys. Rev. Lett. 55, 1200 (1985), and refer-

"S. Froven, Phys. Rev. B 39, 3168 (1989).

⁶⁰ J. J. Hopfield, J. Phys. Chem. Solids 15, 97 (1960).

Scientific_Singapore_1003\

68 C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).

ger Anni Phys Lett 63 2549 (1993)

² A. D. Katnani and G. Margaritondo, J. Appl. Phys. 54, 2522 (1983).

⁷³T. Nakayama, J. Phys. Soc. Jpn. **61**, 2434 (1992).

74 Y. Rajakarunanayake, M. C. Phillips, J. O. McCaldin, D. H. Chow, D. A. Collins, and T. C. McGill, Proc. SPIE 1285, 142 (1990).

75 M. Ukita, F. Hiei, K. Nakano, and A. Ishibashi, Appl. Phys. Lett. 66, 209 (1995).

2902 (1993).

78 S.H. Wei and Zunger (uppublished)

Zanger and A. J. Freeman, Phys. Rev. B 10.

1973).

82 S.-H. Wei and A. Zunger, Phys. Rev. B 39, 3279 (1989)

³⁴M. A. Ryan, M. W. Peterson, D. L. Williamson, J. S. Frey, G. E. Maciel, and B. A. Parkinson, J. Mater. Res. 2, 528 (1987).