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energies J, which are used to describe the energies of
the 2 configurations o.. Consequently, Eq. (1) can be
viewed as defining a set of linear equations, in which a
2+ x 2+ matrix of spin products multiplies a 2N vector
of J's, giving a vector of the energies of the 2+ config-
urations. Viewed this way, it is obvious that the J s of
Eq. (1) can be solved for exactly if the matrix of
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wave method of Khachaturyan. is Unlike Ref. 18, we do
not use the concentration wave formalism to calculate in-
teraction energies from small amplitude waves. Instead,
we fit first-principles total energies to the concentration
wave equations. Also, unlike previous implementations
of the concentration wave method in which the chemi-
cal interaction energies are derived from perturbations
on the coherent potential approximation and relaxations
are neglected, 2i s we determine the interaction energies
from direct first-principles calculations of relaxed struc-
tures. We use the reciprocal-space representation J(k) of
the interaction energy to introduce two major improve-
ments to the conventional CE. First, we apply a "smooth-
ness" condition to J(k), which corresponds to the condi-
tion that the real-space interaction energies decay with
distance. With this condition, we can use a set of in-
teractions in the CE that is much larger than the set of
input
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enthalpy of binary alloys. Finally, the cell-external re-
laxation energy bE'"~ is the energy gained when the unit
cell vectors are allowed to relax. This term vanishes by
symmetry for the Luzonite structure, and is small (~ 1
meV/atom) for the GaP/InP structures studied here.

This decomposition of the relaxation will serve as a
basis for a brief review of previous treatments of relax-
ation within the CE. (i) In some work, i 47 relax-
ation was neglected altogether. (ii) In previous Connolly-
Williams cluster expansions~ is si s2 only high-symmetry
short-period structures were used as input, so the
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nonzero
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less otherwise indicated, we will use t = 1. Note that
using t = 0 completely eliminates the smoothness con-
dition, and results in a plain real-space fit of Eq. (7).
If we fit with a large number of figures and t = 0, the
fitting procedure has no way of knowing which interac-
tions are short-ranged and which are long-ranged. As a
result, the long-ranged interactions will be as strong as
the short-ranged interactions, which is unphysical. The
chief advantage of the reciprocal-space method is that
it lets the fitting procedure choose which pairs are im-
portant. Because of the smoothness criterion, any pair
figure that is not strictly necessary for a good fit will
have an interaction energy of zero. Also, the smoothness
criterion naturally favors short-ranged over long-ranged
interactions, which is physically sensible.

C. Tests of reciprocal-space cluster expansion

Sp

Sy

82

S3

(A, I3, CA, Ll, L3)
so U {CH, CP, Z2)
si U (V2, Y2, Wl, W3)
all structures in Table II

(5 elements),
(8 elements),
(12 elements),
(27 elements).

The set so is the standard Connolly-Williams set, 7 while
the set si was previously used in real-space fits for many
semiconductor alloys. Set ss was previously used in a
real-space CE of semiconductor band gaps. s

To test the reciprocal-space versus real-space CE, we
will first minimize Eq. (26) to determine the interaction
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FIG. 4. Real-space pair interaction energies from the
reciprocal-space fit (c) using input set sz snd E„t= Ax(1—x).

domly generated configurations of Gas sino sP in a 1000-
atom supercell, with all atomic positions relaxed. The di-
rectly calculated formation energy for the random alloy is
20.45 meV/atom. Hence, both the real-space [3(b)] and
the reciprocal-space methods [3(c)]with E„t= Ax(1 —x)
predict well the energy of the random alloy. As discussed
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shows both the rms and the maximum prediction error
of the three fitting procedures using the input set s2.
The reciprocal-space fit [Fig. 3(c)], having much smaller
maximum errors, is clearly superior to the real-space fit.
In Figs. 4 and 5, we show the pair
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and similarly for qB. For cubic materials, the general
form for q issi is

Elastic Theory for Constituent Strain

q(k) = 1—
Cii + p(k)6

(44)

I I I I

[111]

p(k) = p(P, 8) = sin (28) + sin (8) sin (2P), (45)

where P and 8 are spherical polar coordinates defined
by r = [r sin(8) cos(P), r sin(8) sin(P), r cos(8)]. For the
principal directions we
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20

(mev/atom)

FIG. 8. Parametric plot of DEoqs(k, x = 1/2) from Eq. (42) for GaP/InP over the unit sphere. The surface shown is defined

by the spherical polar coordinates [DEoqs(k, 1/2), P, 8), in units of meV/atom.

(c) The working formula for «cs is ) to Edjr«g (o'
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