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Identity of the conduction-band minimum in (AIAs)1/(GaAs) 1 (001) superlattices:
Intermixing-induced reversal of states
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First-principles pseudopotential calculations on the (001) (AlAs)l/(GaAs)1 superlattice (SL) shows

that partial intermixing of the Al and Ga atoms relative to the abrupt case lowers its formation ener-

gy, making this SL even stabler at low T than the fully randomized A10,5Ga0.5As alloy. Concomitantly,

the conduction-band minimum (CBM) reverts from the GaAs L-derived state, to the X "-derived AIAs

state. The previously noted discrepancy between theory (pertinent to abrupt SL's and yielding an L-

derived CBM) and experiment (yielding an X «-derived CBM) is therefore attributed to insulllcient in-

terfacial abruptness in the samples used to date in experimental studies.

The recent perfection of atomic-scale control over nu-

cleation and growth has made possible laboratory syn-

thesis of (AC)p/(BC)p superlattices (SL's) with periods p
in the 1-3 monolayer regime. These systems exhibit a
number of spectroscopic features that are not predicted by
effective-mass and particle-in-a-box models, which retain

only the kinetic energy of the particles, but neglect expli-
cit potential energy (i.e., band-structure) effects. Band-
structure calculations predict that the p I [001] Al-

As/GaAs SL has two unexpected features: (i) The I 1,
conduction state has a lower energy than that of the p 2
SL. ' Kinetic-energy confinement arguments predict a
monotonic decrease of energy with increasing SL size, i.e.,
I ~, should be higher in the p 1 SL than in the p 2 SL.
(ii) The L ~, state of the Alo 5Gao sAs alloy is predicted '

to split by —1 eV in the p I SL. This makes the L~,
derived state the conduction-band minimum (CBM)—even though Lfl, is 0.3 eV above L|, in the alloy. The
L~,-derived state of the SL is also predicted to exhibit
conduction-band localization, even though the efl'ective

masses and barrier heights are small. ' Prediction (i) has
been confirmed experimentally. "' But, in recent experi-
ments, Ge and co-workers' showed that the CBM
behaves like an X-derived state, in contradiction with pre-
diction (ii). In this paper we show that although the ex-
perimental results conflict with the theoretical predictions
for the abrupt SL, they agree well with the theoretical
predictions for an SL in which the layers are partially in-
termixed. We show that intermixing lowers the SL for-
mation energy, while preserving the [001] SL diffraction
spots. In what follows we first describe the symmetry and
the folding of the SL states, then the theoretical predic-
tions for the ordering of these states and the discrepancy
with the ordering deduced from experiment. Finally, we

present our theoretical results for partially intermixed
SL's. We conclude that currently available SL samples
may be insufficiently ordered to exhibit the spectroscopic
level sequence of an atomically abrupt SL.
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X~,-folded states [Eq. (l) 1

Of the three degenerate x,y, z zinc-blende X~, valleys,
Xf, and Xf, (whose k vectors lie in the SL plane) fold in

the SL into the doubly degenerate Ms, (Xf,'») state, while

X~, (whose k vector is in the growth direction) folds into
the "pseudodirect" I 4, (X~,) state. Since the members of
the X~,-folded states (Ms, + I 4, ) have different sym-
metries and k vectors, they do not interact. Both states
have cation-pd and anion-s character, with zero cation-s
character.

L~, -folded states IEq. (2) 1

The four zine-blende L ~, valleys at k 2x/a ( 2,
~ —,', ~ —,

' ) fold into the p I SL states R~, and R4, .
These states have different point symmetries, and hence
cannot interact. R~, is a (Ga-s)+ (As-s) state with zero s
character on the Al site, while the complementary R4,
state has (Al-s)+(As-s) character with zero s character
on the Ga site. Since the R~„wave function is commensu-
rate with the Ga-s component of the potential whereas
R4, is commensurate only with the Al-s component, the
R~, —R4„energy splitting reflects the potential difference
V,, (Ga) —V, (Al) and oscillates with the period p. Hence,
while the L~„alloy wave function "sees" the average of
the cation-s potentials (so the alloy state is extended on
both sublattices), in the p I SL there is a symmetry-
mandated segregation of the amplitude of the L ~,-derived
wave functions into distinct atomic sublattices: R~, on
GaAs and R4, on A1As. Since this feature depends sensi-
tively on symmetry, we will see below that it also depends
on the degree of atomic abruptness at the SL interface.

I ~, and X3,-folded states IEq.
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for 4~p~ 11 SL's, or, for shorter period SL's under
compressive (001)
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and A1As, which raises the energy of I 4, with respect to
M5, . The energy change is 23 meV for the abrupt SL,
and about 3 of that for the intermixed SL. This brings
our theoretical results into full agreement with the experi-
ment.

CONCLUSION

We conclude that a variety of interfacial roughness pat-
terns stabilizes the p = I SL and, at the same time, lead to
a reversal of the identity of the CBM. There is some ex-
perimental evidence for interfacial intermixing in nomi-
nally high-quality A1As/GaAs SL's. The Ms, state of
p I SL's exhibits an unexpected no-phonon line, attri-
buted by Ge and co-workers' to disorder effects. Simi-
larly, the magnitude of the L~, —I"~, mixing, ' the ap-
pearance of defect peaks in the PL (Refs. 11 and 13), and
the fact that there are strong nonradiative decay channels
in the PL for p ~ 3 (reflected by the fact that the total in-

tegrated emission is I order of magnitude weaker than in

longer period SL's) all suggest the possibility of nonflat or
partially disordered interfaces. The suggestion that
currently available AIAs/GaAs SL's are partially inter-
mixed is also consistent with the experimental results of
Ourmazd

equal.

,
' who used chemical-lattice imaging to

show that interfaces that had been characterized optically
as being perfectly abrupt were actually intermixed over
two to four layers around the interface. When truly
high-quality p l SL s will become available, we predict
that a slowly decaying "forbidden" L ~„-derived PL from
the CBM at 1.93 eV will be seen with its characteristic
longitudinal acoustic L-phonon (-27 meV) fingerprints.
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(5.619 A) was used. We used 25 special k points to sample

the Brillouin zone, and the Ceperley-Adler exchange-cor-
relation potential. Convergence tests with an energy cutoff of
18 Ry revealed that energy differences changed by less than

40 meV. The LDA eigenvalues are corrected as follows;

Spin-orbit corrections raise the valence-band maximum ener-
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