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Real-space description of semiconducting band gaps in substitutional systems
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The goal of "band-gap engineering' in substitutional lattices is to identify atomic configurations that
would give rise to a desired value of the band gap. Yet, current theoretical approaches to the problems,
based largely on compilations of band structures for various latice configurations, have not yielded sim-
ple rules relating structural motifs to band gaps. We show that the band gap of substitutional
A1As/GaAs lattices can be usefully expanded in terms of a hierarchy of contributions
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As was proved by Sanchez, Ducastelle, and Gratias, any
lattice property can be rigorously
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of band gap with composition are sizable. (iii) The status
of our experimental ' ' and
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with k& vertices (i.e., a selection of k& out of N sites).
Figure 2 depicts a number of such clusters in the fcc lat-
tice and Table III defines their vertices. The expansion is
defined with respect to an orthonormal set of coeKcients,
as follows. One defines the spin product

II~(o)=S, S2 Skf f f
for each of the 2 figures in configuration o.. The set
I II&(o )] is orthonormal, [including the "empty figure'*

f=(0, 1) for which Ho, (o )=1] in that for two figures f
and f ' we have

P~=2 g II&(o )P(o). .
o.=1

(9)

The series (8) may be reduced using symmetry: denoting
by R one of the NL operations of the space group of the
lattice (not the space group of a particular configuration
o), we have

P(ko )=P(o ) (10)

figure f to the lattice property P is given from Eqs.
(6)—(8) by

2N

g II~(o )II~.(cr)=2 6~~ . (6)

Equation (6) shows that 2 II&(o ) is the transpose ma-
trix of II&(o.); multiplying the matrices in reverse order
one obtains the completeness condition between the two
configurations o and o',

and

II+
&

(R. cr ) = III(o ),
hence, Eq. (9) gives

(12)

g Il~(o )II~(cr')=2 5
f

One can hence rigorously expand any property P(o ) of
the lattice configuration o. in the orthonormal set of
I II~(o. ) I as

2N

P(a )= g III(o )p&
f=1

where the configuration-independent contribution pI of

P(cr) =N g II~(cr )D~pF,
F

(13)

where the "lattice-averaged spin product" (denoted by an
overbar) of the prototype figure

in gives

the

symmetr19T
4 87/Xi4 10.9
84.89 599.44 Td
ic2

o

8)P

the

be





[pF } can then be used to predict band gaps of arbitrary
structures.

shown in Fig. 2. In addition to the normalization con-
stant po, and the site-only p, , figures we use (i) eight
pair (k=2) interactions [Figs. 2(a) and 2(b)], (ii) four
three-body
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From these results, we conclude the following.
(i) The cluster expansion for the direct band gap [Fig.

3(a)] converges considerably slower than that for the total
energy [Eq. (2) and Fig. 3(b)] in that the latter is dom-
inated by the nearest-neighbor pair energy J2 2 while the
former requires a considerably larger number of higher
terms.

(ii) Nevertheless, the cluster expansion of the band gap
is reasonably accurate in that the standard deviation for
the fit (Table V) is comparable to the underlying precision
of the pseudopotential calculation.

(iii) The cluster energies of Fig. 3(a) exhibit an overall
decrease with size, in that the contributions from figures
with larger interatomic separations are rather small.

V. CONVERGENCE AND TRANSFERABILITY

We have conducted four tests to examine the conver-
gence of the cluster expansion.

First, we have recalculated Ipk } from Eq. (23), using

as input only 10 out of 27 structures; the resulting in-
teraction energies were then used to predict the band
gaps of the remaining 17 ordered structures not used in
the f'tt. The last two columns of Table V show that the
prediction error (relative to the "exact" pseudopotential
values) has increased only to 0.04 eV compared to 0.03
eV in the complete fit; both
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TABLE VI. Band-gap expansion coefficients pk and the analogous expansion coefficients Jk for
the total energy [Eq. (2)]. pk (VCA) gives the cluster coefficients for expansion of the virtual crystal
approximation to the band gap.

Figure

{0,1)=Jp
(1,1)=J)

Pairs
{2,1)=J2
(2,2)=K,
(2,3)=L2
(2,4) =M2
(2,5) =N~
(2,6) =Oq
(2,7) =P2
(2,8) = Qp

6
3

12
6

12
4

24
3

pk (me V)

1262.86
584.06

—25.68
13.05
20.68

—41.44
6.40

16.80
3.58

11.05

Pk (VCA)

1435.7
740.9

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

5.2638
—0.0059

—0.8054
—0.0156
—0.0018
—0.0044

0.0003
—0.0085
—0.0024
—0.0027

Three body
(1,1,1)=J3
(2, 1,1)=K3
(3,1,1)=L3
(3,2, 1)=L3

8
12
24
24

—12.92
—0.90
10.36

1.10

0.00
0.00
0.00
0.00

0.0083
—0.0025
—0.0008
—0.0004

Four body
(4, 1)=J4
(4,2) =K4
Square

(4,3 ) =L4

2
12
3
12

17.80
—7.79
22.80

1.17

0.00
0.00

0.00
0.00

—0.0106
—0.0005
—0.0004

0.0035

Es (D4) —E

1(Es)Tj
ET
BT/Xi8 12.35
ET
BT
CPi8 12.57 Tf
131.56 464 Td
15
ET
BTd
(126BT
/X/XiXi8 8.5 Tf
119.89 2656 Td
19j
ET
j
ET
BT
/Xi24L~)8 8.87 Tf
289.33 615.22 T8
(Es)T80j
ET
BT
/XiXi8 9.2 Tf
131.33  424.67 5Tj
ET2re)Tj
ET
Bwhei8 9.14 Tf
114.22 60.67 TTd
(1262re)
BT
/Xirepres/Xi8 8.55 Tf
364.89 674.33 T5
(Es)T63
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eV, i.e., just a bit above the precision of the underlying
pseudopotential calculation.

VI. APPLICATIONS
OF THE CLUSTER EXPANSION

The solid lines in Fig. 1 show the predicted band gap of
perfectly random Al& „Ga As solid solutions, using Eqs.
(15)—(17) and the interaction energies of Table VI. We
see that the bowing of (E~(x) )z is nonparabolic. Using
Eqs. (19) and (20) we find

b2-gody =0.59 eV,

b3»d„=0.64(2x —1) eV,

b~» „d=0.098[(2 x—1) +1] eV,

(27)

i.e., two- and three-body interactions are dominant. The
comparison of these values to experiment is somewhat
clouded by the LDA error on the side of theory, and by
the fact that aHoy data is usually displayed as an average
over certain composition ranges, on the side of experi-
ment. Recent careful experimental
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are the 2"=16 ordered structures A„B4 „(O~n ~4)
spanned by this figure. Then, the alloy band gap can be
written as

SRO effects created by finite temperature equilibrium
have but a negligible effect on the direct band gap of
A1As/GaAs alloys.

(Es)~ = g Q„(x,T)Es(n ) . (32)
C. Predicting direct band gaps of ordered structures

4

E
2

1

c
1

~~
U)

6$ -3
(3 4

Effect of SRO

0.1

GaAs
0.3 0.5 0.7 0.9

Composition AIAs

FICx. 4. Di6'erence in the direct band gap of AlAs/GaAs al-
loys containing short-range order (calculated from the thermo-
dynamic model of Ref. 4 at T=300 K) and the perfectly ran-
dom alloy (T~ a. ).

At T~ oo, it can be shown "' ' that Q„(x, ~ ) becomes
the random Bernoulli probability.

To see the effect of SRO on the alloy's band gap, we
use the function Q„(x,T) computed in Ref. 4(b) for
Al, „Ga„As and contrast the band gap (E )z obtained
from Eq. (32) with that obtained by substituting in this
equation the Bernoulli distribution Q„' '(x, ao ) appropri-
ate to the perfectly random alloy with no SRO. To exag-
gerate the effects, we use Q„(x,T) at a rather low teinper-
ature of 300 K (well below growth temperatures), where
bQ„(x, T) of Eq. (28) is large. We can use for E (n) in

Eq. (32) the band gaps of the 16 structures that are exact-
ly spanned by F,„being a tetrahedron. These consist of
five distinct configurations A (zinc blende), A3B (luzon-
ite), AB (CA), AB3 (luzonite), and B (zinc blende) with
ratios 1:4:6:4:1. To obtain more accurate results (see
Table VII) we can use the renormalization trick of Ref. 4
whereby Es(n) [denoted EE(n, V) in Eq. (2.13) of Ref
4(a)] is replaced by its renormalized from [denoted e„ in
Eq. (2.27) of Ref. 4(a)]. Equation (6.16) of Ref. 4(a) gives
this quantity where all pair interactions are folded in.
Figure 4 shows the difference between the alloy band gap
computed with SRO [i.e., using Q„(x,T=300 K)] and
the band gap of the perfectly random alloy [using
Q„(x, ~ )]. We see that (i) SRO reduces
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gap of 1.72 eV.
Although computationally expensive, we have calculat-

ed the self-consistent band structure of the former x =
—,
'

structure using the pseudopotential method with precise-
ly equivalent basis sets and Brillouin-zone sampling used
for all other structures. This gave a direct band gap of
1.07 eV, very close to the prediction of the cluster expan-
sion of 1.10 eV. This highlights the usefulness of such
cluster expansions in the design of materials with
specified properties. Note that both values are larger
than the linearly weighted average —,'Eg (A1As)
+ ~Eg (GaAs) and then the largest band gap at x =—,

' con-
tained in our "basis set" (e.g., see Fig. 3).

VII. SUMMARY

We have demonstrated that the direct band gap of sub-
stitutional A1As/CraAs systems can be usefully expanded

in terms of contributions from a hierarchy of atomic clus-
ters. %'e find that two-body and three-body figures are
dominant, and that the expansion requires larger figures
than needed to express the total energy surface. This ex-
pansion enables the prediction of the band gap of random
alloys,
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