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by considering the special state of order a where 
all of the N a tetrahedra have the same occupation 
number n, hence ~,,,(n) of equation (7) is just 6.,.. 
This corresponds to an ordered crystal (e.g. Ll0. 
or L12) whose repeat unit is a given (fixed) 
tetrahedron A~_,,B,,. The volume-dependent energy 
E.[A,,B~ .... V] is then simply the (T = 0) equation 
of state of this solid, and the value of AE(n, V) of 
equation (11) at the equilibrium volume V. [which 
minimizes E,,(V)] is the formation enthalpy of this 
ordered phase from its constituent elemental 
solids, i.e. 

AH (") - AE(n, V.) (12a) 

o r ,  

AH ''~ = E '" ' [A,B,_,]  - nE[A] - (4 - n)E[B]. (12b) 

Clearly, from equations (11) and (12) 

AE(n. V) = A H  ¢"J + F ( V  - V.) (13) 

where F is a general (harmonic or anharmonic) 
positive function. 

The physical content of equation (13) can be 
further appreciated by considering the formation of 
an ordered structure AM_,nB m with N A A atoms and 
N B B atoms (N = N A+ N a in total) from the con- 
stituent solids in two formal steps. First, compress or 
dilate the pure crystals A M_,.A,. from its equilibrium 
volume ~ to the volume V akin to the final structure 
(A~ .... B,,,): do the same for pure BM_,,B,,, changing 
its volume from I"~ to V. Clearly, since in both cases 
deformation of equilibrium structures is involved, this 
step requires the investment of some elastic energy 
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sizes in solids [23-28]--was largely neglected in phase 
diagram calculations. In what follows, we describe 
the shortcomings of such traditional nearest-neighbor 
Ising 
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introducing an ad hoc composition dependence into 
the Es. our fundamental objection remains that such 
approaches have but a limited informational con- 
tent in terms of the ph.vsical insights being gained. In 
particular, such approaches do not provide a link 
between the electronic structure of the constituents 
on one hand and the phase stability and phase 
interconventions which these constituents exhibit 
when 

3. TREATING CHEMICAL AND ELASTIC 
ENERGIES ON THE SAME FOOTINGS 

We represent the Cu-Au system at all states of 
order a as a mixture of five basic tetrahedral clusters 
Cu4_,,Au,, with energy functions AE(n, V). To treat 
"chemical" and "'elastic" interactions on the same 
footing, and, at the same time establish a link be- 
tween the phase diagram and the electronic structure 
we identify these AE(n, V) with the excess energy of 
ordered periodic structures Cu4_,Au, (the f.c.c. 
ground state phases [1-4]). While these basic inter- 
action energies could be modelled by various semi- 
classical approaches [23-27] of the size-mismatch 
factor, the electrochemical, or the "electronic" factor, 
we propose at the first stage to compute AE(n, V) 
self-consistently from first-principles band theory for 
the corresponding crystals. We use the f.c.c, struc- 
tures for Cu and Au, the L10 structure for CuAul, 
and the LI., structure for both Cu3Au and CuAu3. 
For each phase we hence calculate, using the local 
density formalism [34] as implemented in the general- 
potential linear augmented plane wave method [35] 
(LAPW) the five functions AE(n, V) for a full range 
of volumes V. Such self-consistent solutions to the 
band structure and total energy naturally incorporate 
both "'chemical" and "'elastic" effects (on the same 
footing) in a first-principles manner. The resulting 
excess energy curves for the ordered structures are 
depicted in Fig, t: the values at the minima give the 
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Fig. 1. Calculated excess energies AE(n, V) [equation (11)] 
for periodic Cu 4_"AuÈ solids (f.c.c. for n = 0 and 4; LI 0 for 
n = 2: Lh for n = 1, and 3). Arrows point to the equilibrium 

lattice parameters. 

equilibrium volumes V, and formation enthalpies 
AH q"'. Note that AH 4"~ are negative ( -0 .83,  -1 .45 
and -0.61 kcal/g-atom for n = 1. 2 and 3. respect- 
ively), differ considerably from the ~'") values which 
fit the phase diagram in an ~-only approach [21.32] 
( -  3.99. - 5.27 and - 3.64 kcal, g-atom, respectively). 
and that AE(n, I') show pronounced volume de- 
pendences. Nevertheless. the calculated equilibrium 
properties deviate somewhat from the measured 
results (e,g. the measured AH ~n' values arc [17.36] 
-1.71,  -2 .10  and ~ - l . 4 k c a l g - a t o m .  and the 
calculated equilibrium volumes deviate by ~ I% 
from experiment [36]). We return to this point in 
Section 3.2. The calculated AE(n. V) were fitted for 
convenience of use to a Murnaghan equation of state 
[37]. We use these {AE(n, V) I as input to solve the 
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can be reduced if the equilibrium molar volumes I,, 
of each cluster will relax (differently for each com- 
position x) to 

The calculated partial molar enthalpies of solutions 
at 800 K [given by Lim AH(x, T)/x(I - x) at x ~ 0  or 
x--* 1, a numerically highly-sensitive quantity] are 
-2 .35kcal /g-a tom for Au dissolved in Cu and 
-3 .1  kcal/g-atom for Cu dissolved in Au, compared 
with the observed values [17] of - 3 . 9  and 
-2 .8kca l /g-a tom,  respectively. (In the absence of 
relaxation the partial molar enthalpies are positive, in 
qualitative conflict with experiment, whereas if strain 
energies are neglected altogether [18]. these quantities 
are substantially too negative.) The diamond-shaped 
symbols in Fig. 3 show the formation enthalpies of 
the three ordered phases, demonstrating (as argued 
before [20]) that they are invariably lower than the 
corresponding mixing enthalpies of the disordered 
phase. Figure 4 shows the normalized excess enthalpy 
[ ~ n =  A H / x ( I  - x ) ] ,  entropy [ ~ s =  A S / x ( I  - x)] 
and free energy [Qr = AF/x(I  - x)] at three tempera- 
tures, demonstrating (i) a negative excess entropy, in 
conflict with earlier data [17] but in agreement with 
more accurate recent data [40] and (ii) strong short- 
range order-induced deviations of all ~ from lin- 
earity. [It is important to note that the E-only model 
[18], fit to critical temperatures produces [21] enor- 
mous errors in the mixing enthalpies and partial 
molar enthalpies (too negative by ~400% at 
T = 800 K), clearly due to the neglect of elastic 
effects], and (iii) a reduction in the composition 
variation of  all f~ at high temperatures. 

As indicated above, in our CVM calculation we 
minimize simultaneously the free energy with respect 
to probabilities and the volume. This provides the 
predicted volume (or lattice parameter) function 
V(x, T) for each phase. In Figs 5(a-c) we present the 
behavior of the lattice parameter for compositions 
x = 0 . 2 5 ,  0.50, 0.75 near their transition tem- 
peratures. In the three cases there is a discontinuity 
when one passes the phase transition region. The 
discontinuity is larger for Cu3Au [Fig. 5(a)] and 
smaller for CuAu~ [Fig. 5(c)]. While we find the 
transition region for Cu3Au to be very narrow [less 
than 0.1 K, see Fig. 5(a)], for CuAu 3 [Fig. 5(c)] the 
transition region (shaded area) extends in a range 
of almost 40 K. The discontinuities for CuAu and 
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Fig. 4. Calculated normalized excess thermodynamic functions for Cu Au in Model C. ~ = AS/x( l  - x), 
f~, = AH/x(1 - x); f~.= AF/x(l  - x). 
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