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The valence band offsets of the common-anion CdTe-HgTe, CdTe-ZnTe, ZnTe-HgTe, and 
GaAs-AIAs semiconductor pairs are calculated from the core level energies. The good agreement 
obtained with experiment for lattice-matched systems and a simple electrostatic model analysis 
suggest interface dipoles to have only a small effect. Furthermore, the microscopic origin of the 
failure of the common-anion rule in lattice-matched systems is identified: it is found that 
participation of cation d orbitals (neglected by tight-binding and pseudopotential approaches 
alike) in the valence band maxima is responsible for much of the band offset in these systems. 

I. INTRODUCTION 

The offset t:..EYOM between the valence band maxima 
(VBM) of two semiconductors A and B forming a hetero
structure is one of the most important device parameters of 
interfacial structures. I It can be decomposed into an intrin
sic "bulk" (b) contribution t:..E tOM characteristic of the two 
separated systems A and B, and an "interface specific" (is) 
contribution t:..E ~BM which depends on the properties of the 
A-B interface2

: 

(1) 

By definition, t:..E tOM is both linear in its constituent com
ponents [t:..E tOM (AlB) = f (B) - f (A)] and transitive 
[t:..EtBM (AlB) = t:..EtOM (AID) + t:..EtBM (D/B)]. In 
contrast, t:..E ~BM need not share these properties, as it de
pends on the A-B bond at the interface (hence on the crys
tallographic orientation, interfacial strain, charge transfer, 
interdiffusion, defect structure, presence of an oxide layer, onfnce c-21.806 -I 0 Te 
/c6 514889aarge onfnce 
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r 15 representation. Since these two states are not very far 
from each other in energy [(E 15d - EYBM ) are 7.3,8.4, and 
7.4 eV, for ZnTe, CdTe, and HgTe, respectively, in our band 
structure calculations], they can couple to each other and 
produce a significant pd repulsion energy t::..Epd 
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B. Change in intersite Madelung potentials 

The electrostatic Madelung (M) energy per unit cell can 
be separated into contributions on different sites, e.g., for 
ACwe have 

EAC _ ~ (VACqAC + VACqAC) 
M-

2 
AA CC, (ASa) 

whereas for ABC2 we have 

EABC _ ~ (VABC qABC + VABC qABC + 2VABC qABC) 
M -2 A A B B C C • 

We wish to calculate first the difference 

~VA = V1 BC - V1c , 

(ASb) 

~VC = V~BC - V~c 

2 aZBASb) ,  t h e  ,  A S a ( A S b )  

= 

V1c V1for c =  
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