

University of Colorado, Boulder

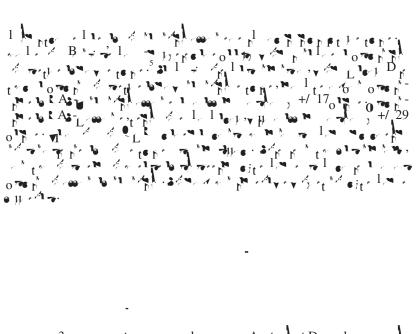
This article raises some questions about the usefulness of meta-analysis as a means of reviewing quantitative research in the social sciences. When a meta-analytic model for SAT coaching is used to predict results from future studies, the amount of prediction error is quite large. Interpretations of meta-analytic regressions and quantifications of program and study characteristics are shown to be equivocal. The match between the assumptions of the meta-analytic model and the data from SAT coaching studies is not good, making statistical inferences problematic. Researcher subjectivity is no less problematic in the context of a meta-analysis than in a narrative review.

Keywords: meta-analysis; literature review; SAT coaching; statistical inference

A : \mathbf{Q} : The author thanks David Freedman and Lorrie Shepard for helpful comments on earlier versions of this article.

A A 2005 87-127 D :10.1177/0193841 04272555 2005t Ot J F F

 $\begin{array}{c} {}^{\prime} {}^{\bullet} {$


r = 1986; r = 1988; B = 2004; B = 1 = 2003).

 $\frac{1}{2} \frac{1}{2} \frac{1}$

)				
			P ed c i	PedcedCac 🍦 E	Fffec F Bec e	Bec e (1990)
Re	S d	C ac 👌 Effec	M de A	M de A M de B	M de C	M de D
Н ее (1984)	SAT-V	57	30	11.6	12.9	24.5
	SAT-M	37	30	25.5	1.2	35.8
Fae (1987)	SAT-V	16	30	11.6	1.9	0.8
	SAT-M	16	30	25.5	13.6	12.1
Ha e (1988)	SAT-M	21	30	25.5	14.5	8.1
W a (1988)	SAT-V	11	30	11.6	2.7	0.5
	SAT-M	16	30	25.5	14.4	11.8
S edec (1989)	SAT-V	0	30	11.6	2.7	0.2

76 TABLE 1: Observed and Predicted Effects From New Coaching Studies

 $\begin{array}{c} \mathbf{v}_{0} & \mathbf{v}_{1} & \mathbf{v$

Re	adS d	SAT-M	SAT-V
A de	a a d P e (1980)		
Sc	A		22
Sc	В		9
Sc	С		14
Sc	D		14
Sc	E		1
Sc	F		14
Sc	G		18
Sc	Н		1
Εa	a d P e (1973)		
G	A	12	
G	В	25	
G	C	11	
	e e (1985)	8	0
R be			
Sc	A		17
Sc	В	12	
Z a		51	14
Med a	a effece a e	12	14

TABLE 4: Estimated Coaching Effects in Randomized Studies

TABLE 5:

A mente a for the top for a the man of and are pa

 $C_{p} = \frac{1}{1 + 1} + \frac{1}{1$

Calculating effect sizes for meta-analytic regressions. $1_{1} \rightarrow 1_{1}$

Calculating effect sizes for meta-analytic regressions. 1, $\frac{1}{1}$, $\frac{1}{$

 $\mathbf{A}^{*} \textbf{-} \textbf{-} \textbf{-} \overset{*}{\leftarrow} \textbf{-}_{\mathbf{0}} \textbf{-} \textbf{-} (h),$

replace " " " " " " " " " " " " "

A. t lo h l. A find the total dependence of total depende • _t•,۳ • ,

$$X_{hij}^{C} z N\left(\mu_{hi}^{C}, \sigma_{hi}^{2}\right) and Y_{hij}^{C} z N\left(\nu_{hi}^{C}, \sigma_{hi}^{2}\right),$$
(4)

Meel-M M Merten ., $X_{hij}^U \operatorname{z} N(\mu_{hi}^U, \sigma_{hi}^2)$ and $Y_{hij}^U \operatorname{z} N(\nu_{hi}^U, \sigma_{hi}^2)$. (5)

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$

 $\begin{array}{c} B & \stackrel{*}{\leftarrow} & \stackrel{*}{$

 $\frac{2}{1} + \frac{1}{1} + \frac{1}$

 $C_{1} + c_{1} + c_{2} + c_{2$

Σ

		Me d 🦂ca De 🍕	
C ac ∮T e	Ra d ed C	Obea C	NC
Sc -ba ed	R be a d O e e (1966) E a a d P e (1973) A de a a d P e (1980) S a (1992)	D e (1953) Fe c (1955) Dea (1958) Keefa e (1976) K c (1979) J (Sa Fa c c e) (1984) ^a B e (1986) Re d a d Obe a (1987) Ha e (1988) W e (1988) W e (1992)	Pa e (1961) Ma (1965) J (A a a, Ne Y e) (1984) ^a

TABLE 6: Studies by Coaching Mode and Design

e ca -ba ed

ပ

Ka a (2002)

Fa e (1960) W a (1962) Fede a Tada C d a d ea a e B Reo a Office (1978) B ea f C e P ec (1979) R c (1980) S d (1980) Se , Be a d, a d K a (1982) Fa e (1983) Se (1988) Z a (1988) Z a (1988) S edec (1989) S edec (1989) S edec (1999)

> C e-ba ed H ee (1984) La c e e (1985)

	SES fb.9998-7.99981.700479484019916269	
,1 -2001	Yea ()	
	Sa eS e ^a (C ac ed/T a.) G ade	

L	1985-1986	NY	e bc(ba)	Σ	1	16/33	16/33	C ecacac Z a (-SES a e) (1988)
M ed	1988	CA	bac, ba) 3 bc(bba)	۳ س	12	61/122	61/122	Sa (1992) 🐧
_	1983-1994	CA	e bc(a	Σ	1	23/35	23/35	J (Sa Fa c c e) (1984)
		E a d a e	5 5 5 5)	:			
			d b ba)	0 0	ł			Ade a a d P e
M ed	1970-1971	NJ, OH, PA 1970-1971		12	11	288/417	NA	EaadPe(1973)
_	1965	N	bc(a Bac,	18	12	188/310	154/265	R be a d O e e (1966)
			a e					Rad ed de Sc -haedcac
M ed	1991-1992	NSA	ae e bcad	Σ	11 , 12	503/3,144	503/3,144	B 📢 (2001)
M ed	1995-1996	USA USA		- ≥	11,12	63 1/ 1, 132 427/2,086	631/1,132 427/2,086	с (1990) Реаd R с (1999)
T	1988-1989	PA		10	12	264/535	264/535	ede
erere III	1985-1986 1987-1988	NY MD, D.C.	e bc(ba) ae(bba)	Σœ	11 51	21/55 200/438	21/55 200/438	Z a (• -SES a e) (1988) S (1989)

M ed ed RN R ∃ ≯ 61/93 9,10,11 1 bc(b ba) 13/27 11 1 ae(b ba Ca c) 42/71 13/27 C e -ba ed c ac H ee (1984) La c e e (1985)

S d	G a d Mea	SAT-M	U U	D	N	MI AI	di l	ΤP	TS	OA	MH	CI	WC	AC
Hee	-	-	-	3.5	-	-	-	0	-	0	0	-	0	0
a B	-	-	-	15	-	1	-	-	-	0	0	0	0	0
la e	-	-	-	4	0	-	-	0	-	0	0	0	0	-
W a	-	-	-	15	F	-	-	-	-	0	0	0	0	0
	-	-	-	15	-	-	-	-	-	0	0	0	0	0
V ∛,C d,adMa e	-	-	-	15	-	-	-	-	-	-	0	0	0	0
	-	-	-	15	-	1	-	-	-	0	0	0	0	0
0 a	-	-	-	4	-	1	0	0	-	0	0	0	0	0
sc ede	-	-	-	16	0	1	-	-	-	-	0	0	0	0
HeadKeffe	-	0	-	8	-	0	0	0	0	0	0	-	0	0
V e	-	0	-	68	-	0	-	-	-	0	0	0	0	0
e adRc	-	-	-	15	-	-	-	-	-	0	0	0	0	0
	-	-	-	15	-	1	-	-	-	0	0	0	0	0
(a a Yea 1	-	-	0	30	0	-	-	-	-	-	-	0	0	0
Ka a Yea 2	-	÷	0	30	0	1	-	-	-	-	-	0	0	0
NOTE: D=d a fc ac		(b d a e		a ebee	eda		Bec e' [1990] e e), VI= e ba	(e e	=		с С	Ň.	ן קריי שריי	ს ი ი

4
4
4
1
1
4
4
۰.
•
•
`
4
•
4
•
•

S d	Yea	РЬ	Ma c	Ra d	ETS	Se	7	
Hee	82	0	0	-	0		5	
Fае	87	0	0	0	0	0	2	
Ha e	88	0	0	0	0	-	2	
W a	88	-	0	0	0	0	2	
S epec	89	-	0	0	0	0	2	
W ∛,C d,adMa e	89	0	0	0	0	0	2	
S	06	-	0	0	0	0	2	
Sa	92	0	0	-	0	-	2	
Sc ede	92	0	0	0	0	0	2	
H e a d Keffe	95	-	0	-	0	0	2	
W e	96	0	-	0	0	0	2	
Pee adRc	66	÷	0	0	-	-	2	
-	101	-	0	0	0	-	2	
Ka a Yea 1	101	÷	0	0	0	0	2	
ര	101	-	0	0	0	0	2	

2. A. 1994, ξ A, γ 1, ξ A, ψ 1, ξ A, ψ 1, ψ A, ψ 1, ψ 1, ψ 1, ψ 1, ψ 4, ψ 4, \psi 4, ψ 4, ψ 4, \psi 4 70¹7.

5. B $\stackrel{*}{\rightarrow}$ $\stackrel{*}{\rightarrow}$

 $L^{1_{0}} \stackrel{\sim}{\downarrow} D.$

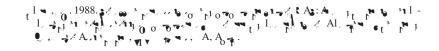
 $\begin{array}{c} L & \bullet_{1} & D \\ \hline & & & \\ 8$

(1985).

12. 1. 1. 1. h = 0

A, J, D. ., \mathbf{w} , D. ., \mathbf{w} , D. ., \mathbf{w} , 1980. \mathbf{x}^{\prime} , \mathbf{w}^{\prime} ,

A , A. 1981. Cu * A , . . . 10 f h r American Psychologist 36 (10): 1086-93.


- B * B. 1988. B. British Journal of Mathematical and Statistical Psychology 41:257-78.
 - $---- 1990. \ \mathbf{G} * \mathbf{f} = \mathbf{f} \cdot \mathbf{f} + \mathbf{f} \cdot \mathbf{f} + \mathbf{f} \cdot \mathbf{f} + \mathbf{f} \cdot \mathbf$

- $\begin{array}{c} \text{Bn} \\ \text{s. B11} \\ \text{$
- $\mathbb{B}_{\mathbf{n}}^{\mathbf{n}}, \mathbb{A}_{\mathbf{n}} = \mathbb{A}_{\mathbf{$
- $\mathbf{B}_{\mathbf{W}}, \mathbf{D}, \mathbf{C}, 2001, \mathbf{M}_{\mathbf{W}} \stackrel{*}{\to} \mathbf{h}_{\mathbf{W}} \stackrel{1}{\to} \mathbf{h}_{\mathbf{W}} \stackrel{*}{\to} \mathbf{h}_{\mathbf{W}} \stackrel$ 14 (1): 10-18.
- B 1. 1
- 2004 . C $_{2}$, γ , γ , γ , γ , γ , γ , 1 ,

- dardized admission examinations: Revised statistical analyses of data gathered by the Boston Regional Office of the Federal Trade Commission.
- Gill, \mathbf{p} , \mathbf{B} , \mathbf{b} , \mathbf{c} ,
- As $_{1}$, $_{1}$, $_{2}$, $_{3}$, $_{4}$, $_{5}$, $_{7}$, $_$
- $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$

- - η^μ, ., C. **,** ., -1995.A* 84 0**,** 49,2 <u>(</u>).3. 30*76 190

 $= \frac{1982.}{10^{10}} \cdot \frac{1}{10^{10}} \cdot \frac{1}{1$

Derek C. Briggs is an assistant professor specializing in quantitative methods and policy analy-