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second method is 
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erties of invariant circles. In Lagrangian form, 
the semi-standard map takes {x,_~, x,} H 
{ 
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(13) 

The expressions on the right hand sides above 
give the continued fraction expansions. Setting 
or) = (y, cr) or (y, l) yields two incommensurate 
frequency vectors since j/$ is irrational. Further- 
more by theorem 2, both of these vectors are in 
9,, since they are elements of the algebraic field 
of degree four generated by 5 = ti + fi. This is 
easy to see, since 5” - 145* + g=O and any 
polynomial in 5 has the form P( 6) = a + bl/Z + 

cfi + cffl for a, b, c, d E Z. Thus y, a; and f 
are all in R( 8). 

Finally we consider a cubic irrational, the real 
solution of 

T3=7+l, 

r== 
1.32471795724474602596090885447809734 

= [l, 3,12,1,1,3,2,3,2,4,2,141,80,2, 

5,1,2,8,2,1,1,3,1, . . .] . (14) 

This so called “spiral mean” frequency was in- 
troduced in [13] as a possible analogue of the 
golden mean since in the Ostlund-Kim version 
of the Farey tree, 7 has a simple periodic con- 
struction. The number T is Diophantine since 
according to a theorem of Roth, every algebraic 
irrational is in L@l+sVS > 0. Thus the critical 
function U”“(T) # 0; however, determining its 
value is difficult because the continued fraction 
elements appear unbounded [22]. None-the-less, 
for the four-dimensional case we will study the 
vector (7, T’) which is 
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solution to eq. (9). For the semi-standard map it 
was possible to find a solution analytic in the 
upper half 6~ plane. In this case only the positive 
Fourier coefficients are nonzero. This is one 
advantage over the series for real mappings 
where all the Fourier coefficients must be consid- 
ered. In the case at hand, since the force, eq. 
(3), has only positive imaginary exponentials, we 
can 
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Examination of the mapping eq. (20) yields in 
addition 

b(2) = 0 ) b(l) 
(n,.O) (0.Q = . 0 (26) 

Similarly, eq. (25) and eq. (19) imply that c0 = 1, 
and eq. (24) yields 

c;,z!.o) = 0 > c& = 0 . (27) 

Finally, the recursion (22) implies that the values 
b(l) (n,.O) and $‘.,, are identical to those for the 
semi-standard map with frequencies w1 and 02, 
respectively. 

This completes the recursion algorithm which 
allows 6, to be built as an explicit function of 
previous b, coefficients. Note that if k > 0 then 
b, is positive and real, a big advantage in their 
computation. Since eq. (18) actually represents 
two series, one in each component of the vector 
g, the domain of convergence of g(u) is the 
intersection of the domains of convergence of 
each component’s series. 

5. Th
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Fig. 2. Logarithmic contour plot of 
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Fig. 4. Boundary of the domain of convergence for w = 
(y, u) and various fixed values of k. The boundaries for 
x”‘(8) are solid, and for xc2)(8) are dashed. Values of k are 
lo-‘, 10-4, 10e3, 10m2, lo-‘, 0.2, 1.0, 10.0. The vertical axis 
corresponds to the frequency w, = y, and the horizontal to 
o* = (T. 

values of the semi-standard map for the various 
frequencies. Note that the curves in figs. 4 and 6 
actually overestimate the correct values on the 
axis; for example in fig. 4, the intersection with 
the r2 axis occurs near 0.985, while table 1 
implies that the correct value is 0.966. This 
overestimate is due to the fact that we compute 
the coefficients only out to the 255th Fourier 
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Fig. 5. Same as fig. 4 with w 

Tl 
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coefficient, and that near the axes the spikes in 
the B, curves become more prominent (see fur- 
ther discussion of this below). For the semi- 
standard mapping more sophisticated fitting 
techniques (e.g. [27]) are required for an accur- 
ate evaluation of the critical function. For our 
mapping we believe that, away from the axes, 
the radius curves are actually more accurate than 
this indicates. In fig. 5, the intersection with the 
rl axis appears to be much lower than the value 
rl = 0.979 given in table 1; however these curves 
actually rise rapidly to the correct (actually over- 
estimated) value as r2 + 0. It is interesting that 
in this case even through the values on axis are 
quite different, the convergence boundary has 
adjusted itself to be nearly square for small k. 

Finally, this rapid rise - approaching uSs(wl) at a 
sharp angle, does not violate log-convexity, as 
required by theorem 3. 

The figures also show that the solid curves 
limit to usS(w2) on the r2 axis, which we call the 
“subdominant” axis for Br ’ . This phenomena 
requires some explanation. When E “0, the 
boundary of domain of convergence for By’ is 
r!‘) = uss(wl), independent of r2; the numerical 
results for nonzero E, however, imply that r2 
limits to asS(w2) on the r2 axis. This also occurs 
for the domain of convergence of the second 
component Bff’: rl + uss(oI) as r2+ 0. To ex- 
plain this phenomena, consider for example the 
small slope limit of B?‘(s). Eq. (35) implies that 

(37) 

where the so term vanishes according 

the e1.0 1 Tf (for ) Tj 0 Tc 639BT -0.0076 Tc 9.6 0 0 9.6 122.88 218.99 Tm /(253dmi(e1.0 1 Tf (for00Tc 9.6 0 0 9.6 1226 207 0 0999.64.4399f (o70.4799 Tm /F1.0 1 Usresting )
Tj 0 Tc ET BT -03p�l2T6 113.04019.664.4399f (o70.4799 Tm /F1.0 1 Tf (the )
Tj 0 Tc ET BT -00.009 Tc 9.6 0 0 9.6425.399f (o70.4799 Tm /F1.0 1 (co(ocluation )
Tj 0 Tc ET BT 060.009 Tc 9.6 0 0 999 2309f (o70.4799 Tm /F1.0 1 re(viluation )
Tj 0 Tc ET BT 0.0024 Tc 9.6 0 0 9 0 214.f (o70.4799 Tm /F1.0 1 i(eS(w2). )
Tj 0 Tc ET BT -0.0029 Tc 9.6 0 0 9.6 2309f (o70.4799 Tm /F1.0 1 Tf (implies )
Tj 0 Tc ET Tc 8.639999 0 0 8.639.6 o70.8 9.6 179.64 Tm /F4.0 1 4shes 0 Tc
ET BT 0.0076 Tc 8.639999 0 0 8.639199 0.09.6 179.64 Tm /F4.0 1 0(35) ) Tj
0 Tc ET Tc 8.639999 0 0 8.6399.6 40.8 9.6 270.4799 Tm /F4.0 1 Tf (B?‘lain )
Tj ET BT 0.0051 Tc 8.639999 0 0 8.63936 283.8 9.6 270.4799 Tm /F4.0 1 Tf ). )
Tj 0 Tc ET Tc 8.639999 0 0 8.639.2 425.399.6 270.4799 Tm /F4.0 1 sklain )
Tj ET BT 0.0104 Tc 8.639999 0 0 8.639.4  84.8 9.6 270.4799 Tm /F4.0 1 slope )
Tj 0 Tc ET BT -145076 Tc 8.639999 0 0 8.639-0. 1449.6 270.4799 Tm /F4.0 1
bshes ) Tj 0 Tc ET BT9.65076.6 91.52 .6 919.6 1449.6 179.64 T.6 F15.0 
 Tf1(37) ) Tj 0 Tc ET 0 0 0.007.6 91.52 .6 919.6 186.52 178.64 T.6 F15.0 
 Tfn.0(35) for the = 
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Fig. 8. Logarithmic plot of B,(s) versus n where s = 10-*S 
and w = (y, (r). The upper plot displays BP’(s) versus n; 
since s 4 1, y is the dominant frequency, and so BF’ ap- 
proaches the semi-standard map coefficients from w = y. The 
lower plot displays By’ versus n; since sel, By’-+0 in 
accord with eq. (38). 

main for any finite 
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more quickly than for other o curves, as we do 
in fact observe. 

As mentioned earlier, the scheme (34)-(36) 
for finding r,(s) has numerical problems when 
k -G 1. For such small k, the singularity on one 
axis is dominant over the singularity on the other 
axis. To illustrate the problem, consider a simple 
example which as a similar imbalance in the 
prominence of its singularities. Let 

qr,, r2) = -e- + -_!!!_ = 2 b, ,,ryri . 
a - r, p - r2 m,n 3 

(50) 

Here small values of S simulate small values of k; 

however, for any nonzero 6, the domain of 
convergence of this series is the rectangle 
{(r ,, r2): rl < a, rz < PI. 

We examine the behavior of eqs. (34)-(36) 
when applied to eq. (50) by a perturbation anal- 
ysis near s = 0. For a finite II, the algorithm gives 
an error in rl of 

(51) 

Thus the method works well provided s < plcr, 
but fails drastically for larger S. In our computa- 
tions, the slope is never larger than one; we 
switch to the inverse of the slope when s = 1. 
Thus, supposing p < CY the method fails in a cone 
P/CX < s < 1. So for the Froeshle mapping, we 
also expect that slopes within a similar cone will 
give bad results if k is too small. That this is true 
can be seen as a slight loss of convexity for the 
smallest values of k along the subdominant axis 
in figs. 4-6. In practice we are unable to lower k 

below 10e5 in the computations 
Finally, our r1(r2) data can be displayed in 

terms of the coupling parameter E, instead of k. 

Figs. 5 and 6 are converted via eq. (21) to the 
three dimensional graphs seen in figs. 9 and 10. 
Here we see in a new way the importance of the 
sum frequency or + w2 through eq. (49). Nu- 
merical overflow for large k prevents us from 

‘do 0.s m.- 
_. “A._ 0 - I_ ,* 

Fig. 9. Radii of convergence curves in (a,, az, E) space for 
x”‘(0) and o = (T, 7’) where r, corresponds to the frequency 
T, and rz to 7’. 

calculating the curves for E too close to its maxi- 
mum value. 

In many ways, it is these three-dimensional 
plots which are most useful to find a partial order 

Fig. 10. Same as fig. 9 with w = (7, [). 
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to determine the “last invariant torus”. One 
concept of ordering of the domains of conver- 
gence is to choose a directed curve in (a,, a*, c) 
beginning at the origin. One could linearly order 
the domains of convergence in terms of the order 
of intersection of the domain boundaries with 
this curve. This motivates the 
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a four dimensional 


