

R

be conservative, or even volume-

classes of maps

- $(\mathbf{A}\mathbf{A}) \quad (\mathbf{\dot{y}}_{1}^{-1}\cdots\mathbf{\dot{y}}_{m}^{-1})^{f}(\mathbf{\dot{y}}_{m}\cdots\mathbf{\dot{y}}_{1})^{f}$ $(\mathbf{E}\mathbf{A}) \quad (\mathbf{\dot{y}}_{1}^{-1}\cdots\mathbf{\dot{y}}_{m}^{-1})e_{m+1}(\mathbf{\dot{y}}_{m}\cdots\mathbf{\dot{y}}_{1})^{f}$
- $(\mathbf{E}\mathbf{E}) \quad \left(f \mathbf{k}_1^{-1} \cdots \mathbf{k}_m^{-1} \right) e_{m+1} (\mathbf{k}_m \cdots \mathbf{k}_1 f) e_0$

where \mathbf{k}_i represents a Hénon transformation in the form (2) a

Theorem 2 (cf. [9, Corollary 2.3] or [15, Theorem 4.4]). Two reduced words $g_m \cdots g_1$ and $g \cdots g_1$ represent the same polynomial automorphism g if and only if = m and there exist maps $s_i \in \mathcal{L}$, i = 0, ..., msuch that $s_0 = s_m = \text{id}$ and $g_i = s_i g_i s_{i-1}^{-1}$.

From this theorem it follows that

A. Gómez, J.D. Meiss / Physics Les

To prove the second part of the proposition, consider first a linear, nonelementary involution (x, y). In that case, taking $s(x, y) = x(1, 0) + y_{-}(1, 0)$, we see that $x = s/s^{-1}$.

Next, we show that every affine, nonelementary involution (12) is c-conjugate to its linear part . We know that $(\xi, \eta) = (-id)(c, 0)$ for some scalar *c*. Taking s(x, y) = (x + c, y) it follows that $s \ s^{-1} = 1$ and the proof is complete. \Box

3.2. Normal forms

We intend to d

A. Gómez, J.D. Me

Proof. Consider g given by the reduced word (14

A. Gómez, J.D. Meiss / Physics Letters A 312 (

and Milnor for the nonreversible case) because the number of parameters is considerably smaller. For example, it is easy to see that the number of symmetric