Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

Zachary P. Kilpatrick · Paul C. Bressloff

 Abstract
 \neq t
 t
 \neq t
 t
 r <

Keywords ttr r r t r

Action Editor: Bard Ermentrout

.C. r.#*. (B) $t = t = \frac{1}{2} \frac{ft}{f} t + t + \frac{1}{2} \frac{ft}{f} t + \frac{1}{2} \frac{ft}{f}$

1 Introduction

 $\begin{array}{c} 00 \end{array}$ r , , *. , .. $\mathbf{r}_{i} \neq \mathbf{r}_{i} + \mathbf{r}_{i}$

1 r t $\mathbf{r} \neq \mathbf{r} \neq \mathbf{t}, \mathbf{t} \neq \mathbf{t}, \mathbf{t} \neq \mathbf{t}, \mathbf{t} \neq \mathbf{t}$ t, **r**, f, **n**, t, ... r $r t \neq (1).$tr

$$f_{b} u = H_{b} u - = / . \frac{u}{u} = . . .$$
 (.)

 $\begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & &$

$$f, u = x_{<0} + y_{<0} + y_{$$

$$r = 1^{\prime} /$$

 $\begin{array}{c} \cdot \mathbf{r} & \neq \neq t & \mathbf{r} & \mathbf{t} & \neq & \mathbf{r} & \mathbf{t} & \mathbf{r} & \mathbf$

-A

 $\langle \mathbf{r}_{i} | \mathbf{t} \rangle = \langle \mathbf{r}_{i} | \mathbf{t} \rangle \langle \mathbf{r}_{i} \rangle$ $\begin{array}{c} \mathbf{r} \\ \mathbf{$ (_____ 00). Tr S \neq t r r \mathbf{r}_{i} , \mathbf{t}_{i} , , \mathbf{t} tt r . t, #. , r. # ... tt r $\mathbf{t}_{j_1j_2}$ ' \mathbf{r}_i \mathbf{t}_i \mathbf{t}_j \mathbf{r}_i \mathbf{t}_i \mathbf{r}_j \mathbf{r}_j \dots it is a ≠t t, ÷. t, r- \mathbf{r} \mathbf{t} \mathbf{t} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{t} \mathbf{r} \mathbf{t} \mathbf{r} \mathbf{t} \mathbf{r} \mathbf{r} \mathbf{t} t. $\mathbf{\dot{f}}_{1}$ \cdot t \neq \neq $r \neq r$ \cdot \neq t t t \neq \cdot \cdot \cdot t t r , t $\mathbf{t} = \mathbf{r} + \mathbf{r} +$ t, r, , , , t, , t, , t, , t, , , t,

· _N = -, ... , = ... t, , =

$$\frac{C_{i}}{t_{i}} = t_{i} N r_{i} \frac{d}{d_{i}} (010) = 1 = 0$$

$$\frac{d_{i}}{d_{i}} = t_{i} N r_{i} \frac{d}{d_{i}} = t r r_{i} r_{i}$$

 $\mathbf{r}_{i} \mathbf{i} = \dots \mathbf{k}_{ij} \cdot \mathbf{N}_{x} + \mathbf{j} = \dots \mathbf{k}_{ij} \cdot \mathbf{k}_{x} + \mathbf{j} + \dots \mathbf{k}_{ij} \cdot \mathbf{k}_{x} + \mathbf{$

$$J_{1} = \frac{-1}{1} I_{1}$$
 (1.)

$$\int_{I} = -u + q. \tag{(.)}$$

$$q_{l} = q_{l} - q_{l} - q_{l} \qquad (.)$$

$$J, u. q. a = - (..)$$

Fig. 13 S \neq t_{i} t_{i}

 $\mathbf{r}_{i} \mathbf{r}_{i} \mathbf$

$$a \qquad \underbrace{\neg \downarrow + s}_{I} J, a \qquad J, a \qquad = \frac{a}{s} I, sa \qquad K, sa .$$

 $\mathbf{r} \quad \mathbf{I} \quad \mathbf{f} \quad$

$$\mathbf{b} + \mathbf{j} = \mathbf{a} \cdot \mathbf{a} \cdot$$

$$= - aI \cdot a K \cdot a - \frac{a}{I} \cdot a K \cdot a , \quad (.1)$$

 $(1 \ 10 \) \neq (1 \ 10 \) \mapsto (1 \ 10 \) \mapsto$), t t j t r j t

References

- •

- , . (00). Rhythms of the brain. r rrțt r. ++.
- *i*, ., & *r*, . (00). <u>N</u> *r*, ..., *i*, ..., *r*, ..., *t*, ..., *r*, ..., *t*, ..., *r*, ..., t r 4. Science, 304, 1 1 .
- 11

- t_{1} , t_{1} , t_{2} , t_{3} , t_{4} , t_{1} , tt -

- r_{1} f_{1} , S_{2} , s_{2} , r_{2} , r_{1} , r_{1} , r_{2} , r_{1} , r_{2} , r_{1} , r_{2} , r_{1} , r_{2} , r_{2} , r_{1} , r_{2} , $r_$ t t r r t r . SIAM Journal on Applied Dynamical Systems, 3, 0.
- , , , S. ., & r, ++, ..., . C. (00). r. t. F t r . Physical Review Letters, 95, 0 10 .
- t, r. SIÄM
- , C. C. ., , , . . ., & , S. (00). 1 00.

- , t., ., & S ≠ , .(001). t ≠ . Modeling feature selectivity in local cortical circuits $(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1$

- , ., & $\mathbf{r} \mathbf{r} \neq \mathbf{i}$, . (1). St t $\mathbf{r} \neq \mathbf{t} = \mathbf{i} \mathbf{t}$ $\mathbf{r} \neq \mathbf{i}$. Physical Review Letters, 74, 101.
- tr_{1} , . ., & r_{11} , . ., C. (00). t_{11} tr ..., \mathcal{X} r $\frac{1}{4}$, \mathcal{X} , c. (00). \mathcal{X} tr $\frac{1}{4}$, $\frac{1}{4}$,

- , C. ., & Tr , . C. (00). .t / r . SIAM Journal on Applied Dynamical Systems, 2,