
Numerical Analysis Preliminary Exam

August 15, 2011

Time: 180 Minutes

Do 4 and only 4 of the following 6 problems. Please indicate clearly
which 4 you wish to have graded.

!!! No Calculators Allowed !!!

!!!Show all of your work !!!
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1. Quadrature

The Chebyshev polynomials of the second kind are de�ned as

Un(x) =
1

n+ 1
T ′n+1(x); n ≥ 0;

where Tn+1(x) is the Chebyshev polynomial of the �rst kind.

(a) Using the form Tn(x) = cos(n�); x = cos(�); x ∈ [−1; 1]; derive a similar expression
for Un(x).

(b) Show 11.95523. [(n)]TJ/F15 11.9552 1.9Td [(;)-909(x)]TJ/F26 11.9552 Tf 25.006 626 -7.891 9Tf 4.5.9701 Tf 7.95 -87( -31(curmilar)-3Td [(+)-222(1)]TJ//F1TJ -26.)]1.9552 Tf 17.881 0 Td [(U)]TJ/F24 7.9701 Tf  3.252 0 Td [(�)]T4.733 11.9552 Tf 5.636 1.793 Td [(()]TJ/F23 11.9552 Tf 4.552 0 Td [(x)]TJ/F15 11.9552 Tf 6.833 Tf 8342 Tf 9.298 0 Td [(1)]T-2/F2F27-J/F435.9552 Tf 17.881 0 Td [(U)]TJ/F24 7.9701 Tf 13.252 0 Td [(�)]T4.733 11.9552 Tf 5.636 1.793 Td [(()]TJ/F23 11.9552 Tf 4.552 0 Td [(x)]TJ/F15 11.9552 Tf 6.833 Tf 83422 [(=)-354(cos()]TJ9F435.11.9552 Tf 4 7./F2427-J/F434.9552 Tf 17.884 0 Td [(U)]TJ/F24 7.9701 Tf 6.861 -1.794 Td [(n)]TJ/F21 7.9701 Tf 5.138 0 Td [(+1)]TJ/F15 11.95552 Tf 5.636 1.793 Td [(()]TJ/F23 11.9552 Tf 4.552 0 Td [(x)]TJ/F15 11.9552 Tf 6.833 Tf 83422 [(=)-354(cos()]TJ9F435.11.9552 Tf 17.884 0 Td [(U)]on(x
UnT ;



2. Linear Algebra

(a) Descibe the singular value decomposition (SVD) of the m × n matrix A. Include an
explanation of the rank of A and how the SVD relates to the four fundamental subspaces

R(A) Range of A R(A∗) Range of A∗

N (A) Nullspace of A N (A∗) Nullspace of A∗

(b) Perform the SVD on the matrix

A =

264 2 1
2 −1
1 0

375
(c) Compute the pseudo-inverse of A (the Moore-Penrose pseudo-inverse) Leave in factored

form.

(d) Find the minimal-length least-squares solution of the problem

Ax = b =

0B@ 1
0
1

1CA :



3. Eigenvalues De�ne the k × k tridiagonal matrix

Tk =

266666664

a1 b2

c2 a2 b3

c3 a3
. . .

. . . . . . bk
ck ak

377777775 :

The characteristic polynomial of Tk is given by pk(�) = det(�I − Tk).

(a) De�ne pk(�) in terms of pk−1(�) and pk−2(�).

(b) Show that if cjbj > 0 for j = 2; : : : ; k, then pk(�) = 0 has only real roots. (Hint: �nd a
real similarity transformation that symmetrizes Tk.)

(c) Assume cjbj > 0 for j = 2; : : : ; k and assume that the roots of pk−2(�) separate the
roots of pk−1(�), that is, between each adjacent pair of roots of pk−1(�), there is a root
of pk−2(�). Prove that the roots of pk−1(�) separate the roots of pk(�). (Hint: draw a
picture and use the recursion.)



4. Root Finding

(a) Write down Newton's method for approximating the square root of a positive number c .

(b) Find a simple recursion relation for the error  , en = xn − c

(c) Prove, using the recursion from part (b), that 
(i) If  , the sequence  xn  (n = 0, 1, 2, ... ) will monotonically decrease to . x0 > c c
(ii) The convergence will be quadratic as the limit is approached,

(d) Describe what happens to the sequence of iterates if we start with an arbitrary initial value for x0



5. ODE

The Forward Euler (FE) method for solving 

(5.1)y ∏(t) = f (t,y(t)), y(t0) = y0

uses for each step the first two terms of its Taylor expansion, i.e. 

(5.2)y(t + h) = y(t) + h f (t,y(t)).

The Taylor Series Method generalizes (5.2) to include further terms in the expansion

(5.3)y(t + h) = c0 + c1h + c2h2 + c3h3 +¢ + cnhh (+O(hn+1)).

The main interest in the Taylor series method arises when one wants extremely high orders of accuracy
(typically in the range of 10-40). There are three main ways to determine (in each step) the constants 

 Many numerical text books consider only the first procedure listed below (and thenc0, c1, c2,¢
dismiss the Taylor approach as generally impractical, since the number of terms more than doubles by
each iteration):  

Procedure 1: Differentiate (5.1) repeatedly to obtain

  y ∏ = f
(5.4)y ∏∏ = f Øf

Øy + Øf
Øt

y ∏∏∏ = f 2 Ø2f
Øy2 + f Øf

Øy

2
+ 2 Ø

2f
ØtØy + Ø2f

Øt2 + Øf
Øt
Øf
Øy

....
and then use ck = y(k)(t)/k!

Consider next the special case of (5.1)    Find the first three coefficients  , startingy ∏ = t2 + y2. c0, c1, c2

from a general point  t  by means of the approaches suggested in parts (a) - (c) below. (Needless to say,
you should get the same answer in all three cases)

(a) Use Procedure 1, as described above.

(b) Use Procedure 2: Note that (5.1) implies

.  (5.5)
d y(t + h)

dh = f (t + h,y(t + h))

Substitute some leading part of (5.3) into (5.5) and equate coefficients.

(c) Use Procedure 3: Note that the first term of (5.3) is known. After that, each time a truncated
version of (5.3) is substituted into the right hand side (RHS) of (5.5) and integrated, one gains



6. PDE

The standard second order finite difference approximation to the ODE   can schematicallyu ∏∏(x) = f (x)
be written as 

(6.1)[1 − 2 1] u/h2 = [1] f + O(h2)

(a) Verify that the approximation

(6.2)[1 − 2 1] u/h2 = [1 10 1] f /12+ O(h4)

indeed is fourth order accurate.

The 2-D counterparts to (6.1) and (6.2) for approximating the Poisson equation   areØ2u
Øx2 + Ø2u

Øy2 = f (x,y)

(6.3)
1

1 −4 1
1

u
h2 = [1] f + O(h2)

and

, (6.4)
1 4 1
4 −20 4
1 4 1

u
6h2 =

1
1 8 1

1

f
12 + O(h4)

respectively.

(b) Sketch the structure and give the entries of the linear system that is obtained when we use (6.4)
to solve a Poisson equation with Dirichlet boundary conditions on the square domain 
[0, 1] % [0, 1].

(c) In the case when   (i.e. solving Laplace's equation), we would expect from (6.3) andf (x,y) h 0
(6.4) that 

(6.5)
1

1 −4 1
1

u
h2 = O(h2)

and

. (6.6)
1 4 1
4 −20 4
1 4 1

u
6h2 = O(h4)

This is correct for (6.5) but (remarkably), the accuracy of (6.6) now jumps to  WithoutO(h6).
working through the details, outline an approach for verifying this increased order of accuracy.

__________________________________________________________________________________


