Applied Analysis Preliminary Exam

10.00am{1.00pm, August 20, 2013

Problem 1: Show that the non-linear integral equation:

$$() = \cos^2() + \int_0^{\infty} e^{-2()} ds, \qquad \in [0,\infty)$$

has a solution in $C^1([0,\infty),\mathbb{R})$.

Problem 2: Calculate the limit. Justify your answer.

$$\lim_{I \to I} \sum_{n=1} \sin\left(\pi\sqrt{\frac{k}{n}}\right) \frac{1}{\sqrt{kn}}.$$

Problem 3: Given a self-adjoint compact operator $A : \ell^2 \longrightarrow \ell^2$, we de ne, for $\lambda \in \mathbb{R}$,

$$E_{\lambda} = \overline{\operatorname{Span}\{ \in \ell^2 \mid A = \mu \text{ for some } \mu \leq \lambda \}}$$

and let

$$E^{\lambda} = E_{\lambda}^{\gamma}$$

denote the orthogonal complement of E_{λ} .

- (a) Show that E^1 is nite dimensional and A maps it to itself.
- (b) In general, for what kind of value λ can you guarantee that:

(1) E_{λ} is nite dimensional

- (2) E_{λ} is in nite dimensional
- (3) $E^{\hat{\lambda}}$ is nite dimensional
- (4) E^{λ} is in nite dimensional

Problem 4: Let *H* be a Hilbert space with an orthonormal basis $(\varphi)_{=1}^{l}$. Suppose further that $(\lambda)_{=1}^{l}$ is a sequence of non-negative real numbers such that $\lambda \to \infty$ as $j \to \infty$. De ne for any nite positive integer *n*, the operator *A* $(t) \in \mathcal{B}(H)$ via