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Teps. Lanenal Expranine,

ICS TiE FRONTIERS OF Phys

PACSs 05.45.Xt — Synchronization; coupled oscillators
PACS 89.75.Hc — Networks and genealogical trees

Etl'a t — We introduce a model to study the e ect of degree-frequency correlations on
synchronization in networks of coupled oscillators. Analyzing this model, we find several
remarkable characteristics. We find a stationary synchronized state that is i) universal, i.e., the
degree of synchrony, as measured by a global order parameter, is independent of network topology,
and ii) fully phase-locked, i.e., all oscillators become simultaneously phase-locked despite having
di erent natural frequencies. This state separates qualitatively di erent behaviors for two other
classes of correlations where, respectively, slow and fast oscillators can remain unsynchronized.
We close by presenting an analysis of the dynamics under arbitrary degree-frequency correlations.

Copyright © EPLA, 2013

Introduction.  The research of emergent collective
behavior in large ensembles of interacting dynami-
cal systems represents a large and important area of
complexity theory [1-4]. Studying synchronization of
coupled oscillators has proven to be particularly useful
in modeling complex systems and uncovering generic
mechanisms behind synchronization processes. Examples
include simultaneous flashing of fireflies [5], cardiac
pacemaker cells [6], circadian rhythms of mammals [7],
collective oscillations of pedestrian bridges [8], and chemi-
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leaving oscillators with low degree and frequency drifting.
These two qualitatively di erent behaviors are separated
by the critical case of linear correlations (3 = 1) for which
the dependence on& disappears and the oscillators either
all drift or all phase-lock. While we have not performed
rigorous experiments testing these critical locking degrees,
the results in fig. 2 are in agreement with our theory.

General correlations.  We finalize our analysis by
noting that, although in this letter we focused on a specific
form of the degree-frequency correlations (i.e., eg. (2)), in
the general case of a joint distribution



