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us to obtain linear scaling in thenumber of atoms. The efficiency of the linear scaling
method depends on electron locality, but even when some electrons are poorly localized,
most are well localized, so we can represent the non-local portion of the density matrix
efficiently using singular value decompositions of appropriate pieces. We demonstrate our
basic approach on a one-dimensional example and indicate considerations for two- and
three- dimensional implementations.

For the case where the number of eigenfunctions included is large (in many other appli-
cations of spectral projectors) we present a multilevel partitioned representation of matrices
(a technique due to Rokhlin and his collaborators [13–15]) which is based on singular value
decompositions of submatrices. We explain the computational gain using the Christoffel–
Darboux summation formula (see also [32]). We also present a method for partitioning
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