
APPM 1360 FINAL EXAM SOLUTIONS July 22, 2022

1 Evaluate the following integrals. Be sure to simplify your answers.

(a) (14 points)
∫ 2
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(b) (14 points)
∫
t5sin(t3)dt

Solution: (a) Since there is a discontinuity in the integrand at x = 0, this is an im-
proper integral that we have to split into two integrals, i.e.,∫ 2
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Since both limits diverge to positive in�nity, the improper integral also
diverges to positive in�nity.

(b) We perform integration by parts for this problem. In order to do so, we
�rst perform a u-substitution, taking u = t3 and du = 3t2 dt (this can be
rearranged to be obtain dt = du

3t2 ). The integral then becomes∫
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(a) (8 points) Solve explicitly for for the general solution y(x).

(b) (8 points) From the general solution y(x) derived in part (a), solve for
the constant of integration c.

Solution: (a) This is a separable ODE, which we can rearrange the ODE as follows:
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y
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We now integrate both sides of the rearranged ODE:∫
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Since we take the square root of both sides, we have to consider both the
negative and positive square root of the right-hand side.

(b) To determine the constant of integration c in the general solution from
earlier, we impose the given initial condition. Since y (0) = �5, this
implies that we take the negative square root of the right-hand side from
earlier, i.e., we take y (x) = �

√
2
3x

3 + C. Imposing the initial condition
on y, we have that
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Thus, the solution that satis�es the above ODE and the given initial
condition is y (x) = �

√
2
3x

3 + 25.

3 (10 points) Consider the curve de�ned by y = sec(x) on 0 � x � �
4 . Set up

but do not evaluate the surface area of the solid obtained by rotating the
curve about the y-axis.

Solution: Since we are rotating the above curve about the y-axis, we use the following
surface area of a solid of revolution formula:
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Here, r is the distance from the axis of rotation to the curve, which is simply
x in this case. The lower and upper bounds of integration are obtained by
taking the lower and upper bounds on x that are provided, i.e.,

a = 0;

b =
�

4
;
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(b)
∫
f(x)dx =
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